RESUMO
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Assuntos
Ácidos Nucleicos , Açúcares , Carboidratos , Glicômica/métodos , Espectrometria de Massas/métodos , Polissacarídeos/químicaRESUMO
In recent years, glycosaminoglycans (GAGs) have emerged into the focus of biochemical and biomedical research due to their importance in a variety of physiological processes. These molecules show great diversity, which makes their analysis highly challenging. A promising tool for identifying the structural motifs and conformation of shorter GAG chains is cryogenic gas-phase infrared (IR) spectroscopy. In this work, the cryogenic gas-phase IR spectra of mass-selected heparan sulfate (HS) di-, tetra-, and hexasaccharide ions were recorded to extract vibrational features that are characteristic to structural motifs. The data were augmented with chondroitin sulfate (CS) disaccharide spectra to assemble a training library for random forest (RF) classifiers. These were used to discriminate between GAG classes (CS or HS) and different sulfate positions (2-O-, 4-O-, 6-O-, and N-sulfation). With optimized data preprocessing and RF modeling, a prediction accuracy of >97% was achieved for HS tetra- and hexasaccharides based on a training set of only 21 spectra. These results exemplify the importance of combining gas-phase cryogenic IR ion spectroscopy with machine learning to improve the future analytical workflow for GAG sequencing and that of other biomolecules, such as metabolites.
Assuntos
Glicosaminoglicanos , Algoritmo Florestas Aleatórias , Glicosaminoglicanos/química , Sulfatos de Condroitina/química , Heparitina Sulfato , Espectrofotometria InfravermelhoRESUMO
Organometallics are widely used in catalysis and synthesis. Their analysis relies heavily on mass spectrometric methods, among which traveling-wave ion mobility spectrometry (TWIMS) has gained increasing importance. Collision cross sections (CCS) obtainable by TWIMS significantly aid the structural characterization of ions in the gas phase, but for organometallics, their accuracy has been limited by the lack of appropriate calibrants. Here, we propose tetraorganylborates and their alkali-metal bound oligomers [Mn-1(BR4)n]- (M = Li, Na, K, Rb, Cs; R = aryl, Et; n = 1-6) as calibrants for electrospray ionization (ESI) TWIMS. These species chemically resemble typical organometallics and readily form upon negative-ion mode ESI of solutions of alkali-metal tetraorganylborates. By combining different tetraorganylborate salts, we have generated a large number of anions in a modular manner and determined their CCS values by drift-tube ion mobility spectrometry (DTIMS) (DTCCSHe = 81-585, DTCCSN2 = 130-704 Å2). In proof-of-concept experiments, we then applied these DTCCS values to the calibration of a TWIMS instrument and analyzed phenylcuprate and argentate anions, [Lin-1MnPh2n]- and [MnPhn+1]- (M = Cu, Ag), as prototypical reactive organometallics. The TWCCSN2 values derived from TWIMS measurements are in excellent agreement with those determined by DTIMS (<2% relative difference), demonstrating the effectiveness of the proposed calibration scheme. Moreover, we used theoretical methods to predict the structures and CCS values of the anions considered. These predictions are in good agreement with the experimental results and give further insight into the trends governing the assembly of tetraorganylborate, cuprate, and argentate oligomers.
RESUMO
Glycosaminoglycans (GAGs) are a family of complex carbohydrates vital to all mammalian organisms and involved in numerous biological processes. Chondroitin and dermatan sulfate, an important class of GAGs, are linear macromolecules consisting of disaccharide building blocks of N-acetylgalactosamine and two different uronic acids. The varying degree and the site of sulfation render their characterization challenging. Here, we combine mass spectrometry with cryogenic infrared spectroscopy in the wavenumber range from 1000 to 1800 cm-1. Fingerprint spectra were recorded for a comprehensive set of disaccharides bearing all known motifs of sulfation. In addition, state-of-the-art quantum chemical calculations were performed to aid the understanding of the differences in the experimental fingerprint spectra. The results show that the degree and position of charged sulfate groups define the size of the conformational landscape in the gas phase. The detailed understanding of cryogenic infrared spectroscopy for acidic and often highly sulfated glycans may pave the way to utilize the technique in fragment-based sequencing approaches.
RESUMO
In a previous work, we explored zone broadening and the achievable plate numbers in linear drift tube ion mobility-mass spectrometry through developing a plate-height model [1]. On the basis of these findings, the present theoretical study extends the model by exploring peak-to-peak resolution and peak capacity in ion mobility separations. The first part provides a critical overview of chromatography-influenced resolution equations, including refinement of existing formulae. Furthermore, we present exact resolution equations for drift tube ion mobility spectrometry based on first principles. Upon implementing simple modifications, these exact formulae could be readily extended to traveling wave ion mobility separations and to cases when ion mobility spectrometry is coupled to mass spectrometry. The second part focuses on peak capacity. The well-known assumptions of constant plate number and constant peak width form the basis of existing approximate solutions. To overcome their limitations, an exact peak capacity equation is derived for drift tube ion mobility spectrometry. This exact solution is rooted in a suitable physical model of peak broadening, accounting for the finite injection pulse and subsequent diffusional spreading. By borrowing concepts from the theoretical toolbox of chromatography, we believe that the present study will help in integrating ion mobility spectrometry into the unified language of separation science.
RESUMO
Heparan sulfate and heparin are highly acidic polysaccharides with a linear sequence, consisting of alternating glucosamine and hexuronic acid building blocks. The identity of hexuronic acid units shows a variability along their sequence, as d-glucuronic acid and its C5 epimer, l-iduronic acid, can both occur. The resulting backbone diversity represents a major challenge for an unambiguous structural assignment by mass spectrometry-based techniques. Here, we employ cryogenic infrared spectroscopy on mass-selected ions to overcome this challenge and distinguish isomeric heparan sulfate tetrasaccharides that differ only in the configuration of their hexuronic acid building blocks. High-resolution infrared spectra of a systematic set of synthetic heparan sulfate stereoisomers were recorded in the fingerprint region from 1000 to 1800 cm-1. The experiments reveal a characteristic combination of spectral features for each of the four diastereomers studied and imply structural modularity in the vibrational fingerprints. Strong spectrum-structure correlations were found and rationalized by state-of-the-art quantum chemical calculations. The findings demonstrate the potential of cryogenic infrared spectroscopy to extend the mass spectrometry-based toolkit for the sequencing of heparan sulfate and structurally related biomolecules.
RESUMO
In the past decade, ion mobility spectrometry (IMS) in combination with mass spectrometry (IM-MS) became a widely employed technique for the separation and structural characterization of ionic species in the gas phase. Similarly to chromatography, where studies on the mechanism of band broadening and adequate plate-height equations have been aiding method development and promoting advancements in column technology, a suitable resolving power theory of drift tube ion mobility-mass spectrometry (DTIM-MS) is essential to stimulate further progress in this emerging field of separation science. In the present study, therefore, we explore dispersion processes in detail and present a plate-height model of ion mobility-mass spectrometry. We quantify the effects of five major dispersion processes that contribute to zone broadening and determine the resolving power in DTIM-MS: diffusion, Coulomb repulsion, electric field inhomogeneities, the finite initial spread of the ion cloud and dispersion outside the mobility cell. A solution is provided to account for the nonuniform separation field in IM-MS in the presence of multiple compartments. The equations - derived from first principles - serve as the basis for formulating an expression that is similar in nature to van Deemter's plate-height equation for chromatography. A comprehensive set of experiments was performed on a custom-built DTIM-MS instrument to evaluate the accuracy of the plate-height model, resulting in satisfactory agreement between experiment and theory. Building on these findings, the plate-height equation was employed to explore the influence of drift gas pressure, injection pulse-width and the mobility of ions on resolving power from a theoretical point of view. Our findings may aid instrument design and development in the future, as well as the optimization of measurement conditions to improve ion mobility separations. By employing the plate-height concept and the general formalism of differential migration processes to describe zone spreading in IM-MS, we aim to find a common ground between this emerging method and such well-established techniques as HPLC or CZE. We also hope that the work presented here will facilitate a broader acceptance of IMS as a separation method of great potential by the communities of chromatography and electrophoresis, as well as that of mass spectrometry.
RESUMO
Glycosaminoglycans (GAGs) are a physio- and pharmacologically highly relevant class of complex saccharides, possessing a linear sequence and strongly acidic character. Their repetitive linear core makes them seem structurally simple at first glance, yet differences in sulfation and epimerization lead to an enormous structural diversity with only a few GAGs having been successfully characterized to date. Recent infrared action spectroscopic experiments on sulfated mono- and disaccharide ions show great promise. Here, we assess the potential of two types of gas-phase action spectroscopy approaches in the range from 1000 to 1800 cm-1 for the structural analysis of complex GAG oligosaccharides. Synthetic tetra- and pentasaccharides were chosen as model compounds for this benchmark study. Utilizing infrared multiple photon dissociation action spectroscopy at room temperature, diagnostic bands are largely unresolved. In contrast, cryogenic infrared action spectroscopy of ions trapped in helium nanodroplets yields resolved infrared spectra with diagnostic features for monosaccharide composition and sulfation pattern. The analysis of GAGs could therefore significantly benefit from expanding the conventional MS-based toolkit with gas-phase cryogenic IR spectroscopy. Graphical abstract.
Assuntos
Glicosaminoglicanos/química , Oligossacarídeos/química , Espectrofotometria Infravermelho/métodos , Animais , Temperatura Baixa , Hélio/química , Humanos , Íons/química , Isomerismo , Espectrofotometria Infravermelho/instrumentação , Sulfatos/análiseRESUMO
The analysis of complex oligosaccharides is traditionally based on multidimensional workflows where liquid chromatography is coupled to tandem mass spectrometry (LC-MS/MS). Due to the presence of multiple isomers, which cannot be distinguished easily using tandem MS, a detailed structural elucidation is still challenging in many cases. Recently, ion mobility spectrometry (IMS) showed great potential as an additional structural parameter in glycan analysis. While the time-scale of the IMS separation is fully compatible to that of LC-MS-based workflows, there are very few reports in which both techniques have been directly coupled for glycan analysis. As a result, there is little knowledge on how the derivatization with fluorescent labels as common in glycan LC-MS affects the mobility and, as a result, the selectivity of IMS separations. Here, we address this problem by systematically analyzing six isomeric glycans derivatized with the most common fluorescent tags using ion mobility spectrometry. We report >150 collision cross-sections (CCS) acquired in positive and negative ion mode and compare the quality of the separation for each derivatization strategy. Our results show that isomer separation strongly depends on the chosen label, as well as on the type of adduct ion. In some cases, fluorescent labels significantly enhance peak-to-peak resolution which can help to distinguish isomeric species.
RESUMO
Quantitative screening for potential drug-protein binding is an essential step in developing novel metal-based anticancer drugs. ICP-MS approaches are at the core of this task; however, many applications lack in the capability of large-scale high-throughput screenings and proper validation. In this work, we critically discuss the analytical figures of merit and the potential method-based quantitative differences applying four different ICP-MS strategies to ex vivo drug-serum incubations. Two candidate drugs, more specifically, two Pt(IV) complexes with known differences of binding affinity towards serum proteins were selected. The study integrated centrifugal ultrafiltration followed by flow injection analysis, turbulent flow chromatography (TFC), and size exclusion chromatography (SEC), all combined with inductively coupled plasma-mass spectrometry (ICP-MS). As a novelty, for the first time, UHPLC SEC-ICP-MS was implemented to enable rapid protein separation to be performed within a few minutes at > 90% column recovery for protein adducts and small molecules. Graphical abstract Quantitative screening for potential drug-protein binding is an essential step in developingnovel metal-based anticancer drugs.
Assuntos
Antineoplásicos/metabolismo , Proteínas Sanguíneas/metabolismo , Compostos Organoplatínicos/metabolismo , Antineoplásicos/análise , Proteínas Sanguíneas/análise , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Análise de Injeção de Fluxo/métodos , Humanos , Espectrometria de Massas/métodos , Metais/análise , Metais/metabolismo , Compostos Organoplatínicos/análise , Ligação Proteica , Ultrafiltração/métodosRESUMO
Native mass spectrometry (MS) has become widely accepted in structural biology, providing information on stoichiometry, interactions, homogeneity, and shape of protein complexes. Yet, the fundamental assumption that proteins inside the mass spectrometer retain a structure faithful to native proteins in solution remains a matter of intense debate. Here, we reveal the gas-phase structure of ß-galactosidase using single-particle cryo-electron microscopy (cryo-EM) down to 2.6-Å resolution, enabled by soft landing of mass-selected protein complexes onto cold transmission electron microscopy (TEM) grids followed by in situ ice coating. We find that large parts of the secondary and tertiary structure are retained from the solution. Dehydration-driven subunit reorientation leads to consistent compaction in the gas phase. By providing a direct link between high-resolution imaging and the capability to handle and select protein complexes that behave problematically in conventional sample preparation, the approach has the potential to expand the scope of both native mass spectrometry and cryo-EM.
Assuntos
Proteínas , Manejo de Espécimes , Microscopia Crioeletrônica/métodos , Proteínas/química , Espectrometria de Massas/métodos , beta-Galactosidase , Manejo de Espécimes/métodosRESUMO
The highly anionic synthetic pentasaccharide fondaparinux (FDPX) - representing the antithrombin binding sequence of heparin - is in clinical use as a potent anticoagulant. Contrary to the unfractionated heparin, FDPX lacks potent antidote completely reversing its anticoagulant activity, therefore it is of great importance to identify new structures exhibiting strong intermolecular interactions towards FDPX. The polycationic heptakis(6-amino-6-deoxy)-beta-cyclodextrin (NH2-ß-CD) can serve as an excellent model compound to mimic these interactions between the oppositely charged oligosaccharides. Herein, extensive NMR spectroscopic and nano-electrospray ionization mass spectrometric (nESI-MS) studies were conducted to understand the molecular-level interactions in the FDPX - NH2-ß-CD systems. NMR experiments were performed at pD 7.4 and 2.0. Job's method of continuous variation and 1H NMR titration experiments suggested the formation of FDPXâNH2-ß-CD complex at pD 7.4, while the presence of multiple complexes was assumed at pD 2.0. Stability constants were determined by separate 1H NMR titrations, yielding log ß11=3.65 ± 0.02 at pD 7.4, while log ß11 ≥ 4.9 value suggested a high-affinity system at pD 2.0. 2D NOESY NMR studies indicated spatial proximities between the anomeric resonance α-l-iduronic acid residue and the cyclodextrin's methylene unit in the proximity of the cationic amino function. Acidic degradation of FDPX was investigated by NMR and MS for the first time in detail confirming that desulfation occurs involving one to two sulfate moieties. The desulfation of FDPX was inhibited by the cationic cyclodextrin in the case of equimolar ratio at pD 2.0. This is the first report on the stabilizing effect of cyclodextrin complexation on heparin degradation.
Assuntos
Heparina , beta-Ciclodextrinas , Fondaparinux , Espectroscopia de Ressonância MagnéticaRESUMO
Despite evident regulatory roles of heparan sulfate (HS) saccharides in numerous biological processes, definitive information on the bioactive sequences of these polymers is lacking, with only a handful of natural structures sequenced to date. Here, we develop a "Shotgun" Ion Mobility Mass Spectrometry Sequencing (SIMMS2) method in which intact HS saccharides are dissociated in an ion mobility mass spectrometer and collision cross section values of fragments measured. Matching of data for intact and fragment ions against known values for 36 fully defined HS saccharide structures (from di- to decasaccharides) permits unambiguous sequence determination of validated standards and unknown natural saccharides, notably including variants with 3O-sulfate groups. SIMMS2 analysis of two fibroblast growth factor-inhibiting hexasaccharides identified from a HS oligosaccharide library screen demonstrates that the approach allows elucidation of structure-activity relationships. SIMMS2 thus overcomes the bottleneck for decoding the informational content of functional HS motifs which is crucial for their future biomedical exploitation.
Assuntos
Heparitina Sulfato/química , Íons , Espectrometria de Massas/métodos , Oligossacarídeos/química , Epitopos , Fatores de Crescimento de Fibroblastos/metabolismo , Ácido Glucurônico/química , Heparina , Heparitina Sulfato/metabolismo , Análise de Sequência/métodos , Relação Estrutura-Atividade , Sulfotransferases/metabolismoRESUMO
DNA and locked nucleic acid (LNA) were characterized as single strands, as well as double stranded DNA-DNA duplexes and DNA-LNA hybrids using tandem mass spectrometry with collision-induced dissociation. Additionally, ion mobility spectrometry was carried out on selected species. Oligonucleotide duplexes of different sequences-bearing mismatch positions and abasic sites of complementary DNA 15-mers-were investigated to unravel general trends in their stability in the gas phase. Single-stranded LNA oligonucleotides were also investigated with respect to their gas phase behavior and fragmentation upon collision-induced dissociation. In contrast to the collision-induced dissociation of DNA, almost no base loss was observed for LNAs. Here, backbone cleavages were the dominant dissociation pathways. This finding was further underlined by the need for higher activation energies. Base losses from the LNA strand were also absent in fragmentation experiments of the investigated DNA-LNA hybrid duplexes. While DNA-DNA duplexes dissociated easily into single stranded fragments, the high stability of DNA-LNA hybrids resulted in predominant fragmentation of the DNA part rather than the LNA, while base losses were only observed from the DNA single strand of the hybrid.
Assuntos
DNA/química , Oligonucleotídeos/química , Sequência de Bases , Modelos Moleculares , Conformação de Ácido Nucleico , Espectrometria de Massas por Ionização por Electrospray , TermodinâmicaRESUMO
The potential advantage of platinum(iv) complexes as alternatives to classical platinum(ii)-based drugs relies on their kinetic stability in the body before reaching the tumor site and on their activation by reduction inside cancer cells. In this study, an analytical workflow has been developed to investigate the reductive biotransformation and kinetic inertness of platinum(iv) prodrugs comprising different ligand coordination spheres (respectively, lipophilicity and redox behavior) in whole human blood. The distribution of platinum(iv) complexes in blood pellets and plasma was determined by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. An analytical approach based on reversed-phase (RP)-ICP-MS was used to monitor the parent compound and the formation of metabolites using two different extraction procedures. The ligand coordination sphere of the platinum(iv) complexes had a significant impact on their accumulation in red blood cells and on their degree of kinetic inertness in whole human blood. The most lipophilic platinum(iv) compound featuring equatorial chlorido ligands showed a pronounced penetration into blood cells and a rapid reductive biotransformation. In contrast, the more hydrophilic platinum(iv) complexes with a carboplatin- and oxaliplatin-core exerted kinetic inertness on a pharmacologically relevant time scale with notable amounts of the compound accumulated in the plasma fraction.
Assuntos
Carboplatina/sangue , Carboplatina/farmacocinética , Complexos de Coordenação/sangue , Complexos de Coordenação/farmacocinética , Compostos Organoplatínicos/sangue , Compostos Organoplatínicos/farmacocinética , Pró-Fármacos/farmacocinética , Cromatografia Líquida de Alta Pressão , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Nanosferas/química , Oxaliplatina , OxirreduçãoRESUMO
Human breast milk is the gold standard for infant feeding and the best possible nourishment a new-born could have. Breastfeeding is the natural way to provide optimal nutritional, immunological and emotional nurturing for the healthy growth and development of infants. Human milk is a complex and dynamic biofluid comprised of many hundreds to thousands of distinct bioactive structures, among which one of the most abundant substances are the non-conjugated complex carbohydrates referred to as human milk oligosaccharides (HMOs). Due to their structural diversity and abundance, HMOs possess many beneficial biological functions. In order to understand human milk composition and HMO functions, state-of-the-art glycomic methods are inevitable. The industrial, large scale chemoenzymatic production of the most abundant HMOs became a reality in the last years and it evokes the need for straightforward and genuine analytical procedures to monitor the synthetic process and the quality of the products. It is obvious, that HMOs represent the next breakthrough in infant nutrition, as the addition of HMOs (such as 2'-fucosyllactose or lacto-N-neotetraose) to infant- and follow-on formulas, processed cereal-based food and baby foods for infants and young children etc. will revolutionize this field. This review highlights the potential applications of HMOs in the (bio)pharmaceutical industry, also summarizes the analytical methods available for the characterization of HMOs. An overview of the structure and function of HMOs along with their determination methods in complex matrices are provided. Various separation methods including liquid- and gas chromatography and capillary electrophoresis for the characterization and novel approaches for the quantitation of HMOs are discussed.