Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Eur J Immunol ; 54(3): e2350776, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38191758

RESUMO

Gingival fibroblasts (GFs) are abundant structural cells of the periodontium that contribute to the host's innate immunity by producing cytokines and chemokines in response to oral pathogens, such as Porphyromonas gingivalis. Isolated lipopolysaccharide (Pg-LPS) is commonly used to study GF responses to P. gingivalis; however, this approach produced conflicting observations regarding its proinflammatory potential and the engagement of specific Toll-like receptors (TLRs). In this work, we demonstrate that commercially available Pg-LPS preparations are weak activators of GF innate immune responses compared with live P. gingivalis or other relevant virulence factors, such as P. gingivalis fimbriae or LPS from Escherichia coli. GF's nonresponsiveness to Pg-LPS can be only partly attributed to the low expression of TLR4 and its accessory molecules, CD14 and LY36, and is likely caused by the unique structure and composition of the Pg-LPS lipid A. Finally, we combined gene silencing and neutralizing antibody studies to demonstrate that GF response to infection with live P. gingivalis relies predominantly on TLR2. In contrast, the LPS-TLR4 signaling plays a negligible role in inflammatory cytokine production by GFs exposed to this oral pathogen, confirming that Pg-LPS stimulation is not an optimal model for studies of GF responses to P. gingivalis.


Assuntos
Lipopolissacarídeos , Porphyromonas gingivalis , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fibroblastos
2.
Eur J Immunol ; 48(5): 855-860, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29400409

RESUMO

The requirement to remove apoptotic cells is equally important in homeostasis and inflammatory disease. In particular, during viral infections large quantities of infected cells undergo apoptosis and need to be efficiently cleared by phagocytes to prevent secondary necrosis. Although specific roles of several apoptotic cell sensors, such as the TAM (Tyro3, Axl, MerTK) receptor family, have been characterized in mouse models, little is known about their regulation and involvement in apoptotic cell uptake (efferocytosis) by human macrophages under inflammatory conditions. We show that whereas pro-inflammatory stimuli consistently downregulated MerTK expression in human monocyte-derived macrophages (MDMs), stimuli indicative of a viral infection, interferon-α (IFN-α) and the TLR3 ligand poly(I:C), specifically induced Axl expression and promoted binding of the bridging molecule Gas6. Axl induction by IFN-α and poly(I:C) was associated with higher MDM efferocytic capacity compared to cells treated with other pro-inflammatory stimuli, such as LPS and IFN-γ. While MerTK blocking antibody uniformly suppressed apoptotic cell uptake by MDMs, Axl blocking antibody significantly reduced efferocytosis by poly(I:C)-stimulated MDMs, but not by resting MDMs. Our observations demonstrate that Axl induction during viral infections contributes to maintaining macrophage capacity to engulf apoptotic cells, which may have important consequences for resolution of anti-viral immune responses.


Assuntos
Apoptose/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interferon-alfa/imunologia , Células Jurkat , Macrófagos/virologia , Poli I-C/imunologia , Receptor Tirosina Quinase Axl
3.
Crit Rev Microbiol ; 44(3): 336-350, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28971711

RESUMO

Pathogens have developed sophisticated strategies to evade the immune response, among which manipulation of host cellular epigenetic mechanisms plays a prominent role. In the last decade, modulation of histone acetylation in host cells has emerged as an efficient strategy of bacterial immune evasion. Virulence factors and metabolic products of pathogenic microorganisms alter expression and activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to suppress transcription of host defense genes through epigenetic changes in histone acetylation marks. This new avenue of pathogen-host interactions is particularly important in light of introduction of HDAC inhibitors into clinical practice. Considerable effort is currently being applied to better understand the effects of HDAC inhibitors on the quality of immune responses to pathogens and to characterize the therapeutic potential of these compounds in microbial infections. In this review, we will discuss the recently discovered mechanisms utilized by bacteria to facilitate their survival within infected hosts through subversion of the host acetylation system and the effects of acetylation modulators, including HDAC inhibitors and bromodomain-containing BET protein inhibitors, on innate immune responses against microbial pathogens. Integration of these two lines of experimental evidence provides critical information on the perspectives of epigenetic therapies targeting protein acetylation in infectious diseases.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/enzimologia , Histona Desacetilases/metabolismo , Interações Hospedeiro-Patógeno , Animais , Bactérias/genética , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Epigênese Genética , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Humanos
4.
Oral Dis ; 24(8): 1581-1590, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29989318

RESUMO

OBJECTIVES: To investigate the processes associated with the excessive production of collagen I in hereditary gingival fibromatosis (HGF). MATERIALS AND METHODS: Three HGF subjects and five controls were enrolled in the study. Histomorphological and immunohistological analyses were performed on gingival tissues. The expression of heat-shock protein 47 (HSP47), collagen I, transforming growth factor-ß1 (TGF-ß1), connective tissue growth factor (CTGF), matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) by gingival fibroblasts isolated from HGF and controls was analysed using qRT-PCR, Western blotting and ELISA. RESULTS: Considerable accumulation of fibrotic fibrils and increased synthesis of HSP47 were noted in HGF gingival tissues. The synthesis of collagen I, HSP47, TGF-ß1, CTGF and TIMP-1 was significantly elevated in HGF gingival fibroblasts compared with controls, while the production of MMP-1 was decreased. CONCLUSIONS: We report that fibrosis in HGF gingival tissues is associated with increased synthesis of HSP47. This finding was confirmed by an in vitro study, where excessive production of collagen I was associated with increased synthesis of HSP47, TGF-ß1 and CTGF by HGF gingival fibroblasts. Moreover, the shift in the TIMP-1/MMP-1 ratio identifies increased synthesis of TIMP-1 as one of the processes associated with collagen I overproduction in HGF fibroblasts.


Assuntos
Colágeno Tipo I/metabolismo , Fibromatose Gengival/metabolismo , Fibromatose Gengival/patologia , Proteínas de Choque Térmico HSP47/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Adolescente , Adulto , Células Cultivadas , Criança , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Feminino , Fibroblastos , Fibromatose Gengival/genética , Expressão Gênica , Gengiva/citologia , Proteínas de Choque Térmico HSP47/genética , Humanos , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
6.
Ann Rheum Dis ; 76(1): 277-285, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27457515

RESUMO

OBJECTIVES: Non-selective histone deacetylase (HDAC) inhibitors (HDACi) have demonstrated anti-inflammatory properties in both in vitro and in vivo models of rheumatoid arthritis (RA). Here, we investigated the potential contribution of specific class I and class IIb HDACs to inflammatory gene expression in RA fibroblast-like synoviocytes (FLS). METHODS: RA FLS were incubated with pan-HDACi (ITF2357, givinostat) or selective HDAC1/2i, HDAC3/6i, HDAC6i and HDAC8i. Alternatively, FLS were transfected with HDAC3, HDAC6 or interferon (IFN)-α/ß receptor alpha chain (IFNAR1) siRNA. mRNA expression of interleukin (IL)-1ß-inducible genes was measured by quantitative PCR (qPCR) array and signalling pathway activation by immunoblotting and DNA-binding assays. RESULTS: HDAC3/6i, but not HDAC1/2i and HDAC8i, significantly suppressed the majority of IL-1ß-inducible genes targeted by pan-HDACi in RA FLS. Silencing of HDAC3 expression reproduced the effects of HDAC3/6i on gene regulation, contrary to HDAC6-specific inhibition and HDAC6 silencing. Screening of the candidate signal transducers and activators of transcription (STAT)1 transcription factor revealed that HDAC3/6i abrogated STAT1 Tyr701 phosphorylation and DNA binding, but did not affect STAT1 acetylation. HDAC3 activity was required for type I IFN production and subsequent STAT1 activation in FLS. Suppression of type I IFN release by HDAC3/6i resulted in reduced expression of a subset of IFN-dependent genes, including the chemokines CXCL9 and CXCL11. CONCLUSIONS: Inhibition of HDAC3 in RA FLS largely recapitulates the effects of pan-HDACi in suppressing inflammatory gene expression, including type I IFN production in RA FLS. Our results identify HDAC3 as a potential therapeutic target in the treatment of RA and type I IFN-driven autoimmune diseases.


Assuntos
Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Histona Desacetilases/fisiologia , Mediadores da Inflamação/metabolismo , Sinoviócitos/metabolismo , Acetilação , Adulto , Idoso , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Células Cultivadas , Regulação para Baixo/fisiologia , Feminino , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/fisiologia , Histona Desacetilases/genética , Humanos , Interferon beta/biossíntese , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Masculino , Pessoa de Meia-Idade , Fosforilação , Fator de Transcrição STAT1/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/imunologia
7.
Ann Rheum Dis ; 75(2): 430-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452308

RESUMO

OBJECTIVES: Epigenetic modifications play an important role in the regulation of gene transcription and cellular function. Here, we examined if pro-inflammatory factors present in the inflamed joint of patients with rheumatoid arthritis (RA) could regulate histone deacetylase (HDAC) expression and function in fibroblast-like synoviocytes (FLS). METHODS: Protein acetylation in synovial tissue was assessed by immunohistochemistry. The mRNA levels of HDAC family members and inflammatory mediators in the synovial tissue and the changes in HDAC expression in RA FLS were measured by quantitative (q) PCR. FLS were either transfected with HDAC5 siRNA or transduced with adenoviral vector encoding wild-type HDAC5 and the effects of HDAC5 manipulation were examined by qPCR arrays, ELISA and ELISA-based assays. RESULTS: Synovial class I HDAC expression was associated with local expression of tumour necrosis factor (TNF) and matrix metalloproteinase-1, while class IIa HDAC5 expression was inversely associated with parameters of disease activity (erythrocyte sedimentation rate, C-reactive protein, Disease Activity Score in 28 Joints). Interleukin (IL)-1ß or TNF stimulation selectively suppressed HDAC5 expression in RA FLS, which was sufficient and required for optimal IFNB, CXCL9, CXCL10 and CXCL11 induction by IL-1ß, associated with increased nuclear accumulation of the transcription factor, interferon regulatory factor 1(IRF1). CONCLUSIONS: Inflammatory cytokines suppress RA FLS HDAC5 expression, promoting nuclear localisation of IRF1 and transcription of a subset of type I interferon response genes. Our results identify HDAC5 as a novel inflammatory mediator in RA, and suggest that strategies rescuing HDAC5 expression in vivo, or the development of HDAC inhibitors not affecting HDAC5 activity, may have therapeutic applications in RA treatment.


Assuntos
Artrite Reumatoide/metabolismo , Citocinas/genética , Fibroblastos/metabolismo , Histona Desacetilases/metabolismo , Membrana Sinovial/citologia , Adulto , Idoso , Artrite Reumatoide/genética , Sedimentação Sanguínea , Proteína C-Reativa/análise , Epigênese Genética , Feminino , Humanos , Fator Regulador 1 de Interferon/genética , Interleucina-1beta/metabolismo , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo
8.
Ann Rheum Dis ; 75(2): 422-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25467295

RESUMO

OBJECTIVE: To investigate the effects of BET bromodomain protein inhibition on inflammatory activation and functional properties of rheumatoid arthritis synovial fibroblasts (RASF). METHODS: The expression of the BET bromodomain proteins BRD2, BRD3 and BRD4 was analysed in synovial tissue by immunohistochemistry. RASF were stimulated with tumour necrosis factor (TNF)-α, interleukin (IL)-1ß and toll-like receptor (TLR) ligands (Pam3, pIC and lipopolysaccharide (LPS)) in the presence or absence of the BET inhibitor I-BET151, or siRNA targeting BRD2, BRD3 and BRD4. RASF expression of inflammatory mediators, including MMP1, MMP3, IL-6 and IL-8, was measured by q-PCR, q-PCR array and ELISA. Cellular viability, apoptosis, proliferation and chemoattractive properties of RASF were investigated using MTT, cell apoptosis ELISA, BrdU-based proliferation and transwell migration assays. RESULTS: BRD2, BRD3 and BRD4 proteins were detected in rheumatoid arthritis (RA) synovial tissue, expressed in both RASF and macrophages. I-BET151 suppressed cytokine and TLR ligand-induced secretion of MMP1, MMP3, IL-6 and IL-8, and mRNA expression of more than 70% of genes induced by TNF-α and IL-1ß. Combined silencing of BRD2, BRD3 and BRD4 significantly reduced cytokine and TLR ligand-induced expression of a subset of gene products targeted by I-BET151, including MMP1, CXCL10 and CXCL11. I-BET151 treatment of RASF reduced RASF proliferation, and the chemotactic potential for peripheral blood leucocytes of RASF conditioned medium. CONCLUSIONS: Inhibition of BET family proteins suppresses the inflammatory, matrix-degrading, proliferative and chemoattractive properties of RASF and suggests a therapeutic potential in the targeting of epigenetic reader proteins in RA.


Assuntos
Artrite Reumatoide/enzimologia , Artrite Reumatoide/genética , Fibroblastos/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Membrana Sinovial/metabolismo , Proteínas de Ciclo Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Proteínas Nucleares/metabolismo , Osteoartrite/enzimologia , Osteoartrite/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Toll-Like/metabolismo , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Ann Rheum Dis ; 74(9): 1763-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24812285

RESUMO

BACKGROUND: Forkhead box O (FoxO) transcription factors integrate environmental signals to modulate cell proliferation and survival, and alterations in FoxO function have been reported in rheumatoid arthritis (RA). OBJECTIVES: To examine the relationship between inflammation and FoxO expression in RA, and to analyse the mechanisms and biological consequences of FoxO regulation in RA fibroblast-like synoviocytes (FLS). METHODS: RNA was isolated from RA patient and healthy donor (HD) peripheral blood and RA synovial tissue. Expression of FoxO1, FoxO3a and FoxO4 was measured by quantitative PCR. FoxO1 DNA binding, expression and mRNA stability in RA FLS were measured by ELISA-based assays, immunoblotting and quantitative PCR. FLS were transduced with adenovirus encoding constitutively active FoxO1 (FoxO1ADA) or transfected with small interfering RNA targeting FoxO1 to examine the effects on cell viability and gene expression. RESULTS: FoxO1 mRNA levels were reduced in RA patient peripheral blood compared with HD blood, and RA synovial tissue FoxO1 expression correlated negatively with disease activity. RA FLS stimulation with interleukin 1ß or tumour necrosis factor caused rapid downregulation of FoxO1. This effect was independent of protein kinase B (PKB), but dependent on c-Jun N-terminal kinase (JNK)-mediated acceleration of FoxO1 mRNA degradation. FoxO1ADA overexpression in RA FLS induced apoptosis associated with altered expression of genes regulating cell cycle and survival, including BIM, p27(Kip1) and Bcl-XL. CONCLUSIONS: Our findings identify JNK-dependent modulation of mRNA stability as an important PKB-independent mechanism underlying FoxO1 regulation by cytokines, and suggest that reduced FoxO1 expression is required to promote FLS survival in RA.


Assuntos
Artrite Reumatoide/genética , Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , RNA Mensageiro/metabolismo , Adulto , Idoso , Artrite Reumatoide/metabolismo , Proteínas de Ciclo Celular , Sobrevivência Celular , Regulação para Baixo/efeitos dos fármacos , Feminino , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/farmacologia
10.
Front Immunol ; 15: 1355357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576615

RESUMO

Chronic periodontitis (CP), an inflammatory disease of periodontal tissues driven by a dysbiotic subgingival bacterial biofilm, is also associated with several systemic diseases, including rheumatoid arthritis (RA). Porphyromonas gingivalis, one of the bacterial species implicated in CP as a keystone pathogen produces peptidyl arginine deiminase (PPAD) that citrullinates C-terminal arginine residues in proteins and peptides. Autoimmunity to citrullinated epitopes is crucial in RA, hence PPAD activity is considered a possible mechanistic link between CP and RA. Here we determined the PPAD enzymatic activity produced by clinical isolates of P. gingivalis, sequenced the ppad gene, and correlated the results with clinical determinants of CP in patients from whom the bacteria were isolated. The analysis revealed variations in PPAD activity and genetic diversity of the ppad gene in clinical P. gingivalis isolates. Interestingly, the severity of CP was correlated with a higher level of PPAD activity that was associated with the presence of a triple mutation (G231N, E232T, N235D) in PPAD in comparison to W83 and ATCC 33277 type strains. The relation between mutations and enhanced activity was verified by directed mutagenesis which showed that all three amino acid residue substitutions must be introduced into PPAD expressed by the type strains to obtain the super-active enzyme. Cumulatively, these results may lead to the development of novel prognostic tools to assess the progress of CP in the context of associated RA by analyzing the ppad genotype in CP patients infected with P. gingivalis.


Assuntos
Periodontite Crônica , Porphyromonas gingivalis , Humanos , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Peptídeos , Periodonto/metabolismo , Periodontite Crônica/genética
12.
Mol Oral Microbiol ; 38(4): 334-346, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37347653

RESUMO

Porphyromonas gingivalis is an oral pathogen that promotes dysbiosis by quenching the bactericidal activity of the host immune system while maintaining chronic inflammation, leading to periodontitis. This involves the secretion of virulence factors such as P. gingivalis peptidyl arginine deiminase (PPAD), which converts the C-terminal Arg residues of bacterial and host-derived proteins and peptides into citrulline. We have previously shown that PPAD activity and major fimbriae (containing FimA) are necessary for P. gingivalis to activate Toll-like receptor 2 (TLR2). TLR2 is an important component of the innate immune system and plays a predominant role in the recognition of P. gingivalis by host cells. Here, we extend those findings to show that P. gingivalis strains deficient for PPAD and fimbriae induced almost identical transcriptional profiles in infected primary human gingival fibroblasts (PHGFs), but these differed substantially from the transcriptome elicited by the wild-type ATCC 33277 strain. Apparently, PPAD-modified fimbriae trigger the host cell response to P. gingivalis, as confirmed by showing that the proinflammatory host cell response mediated by TLR2 is dependent on PPAD activity and the presence of fimbriae, with type I fimbriae as the most potent TLR2 activators. We also found that PPAD-modified accessory fimbrial subunits (FimC, FimD, and FimE) alone or in combination are TLR2 ligands in a reporter cell line. Although FimA polymerization to form the fimbrial shaft was not required for TLR2 activation, the secretion and proteolytic maturation of FimA were necessary for signaling by accessory Fim proteins. This was supported by showing that the proinflammatory activation of PHGFs is dependent on PPAD and accessory fimbrial subunits. We conclude that accessory fimbrial subunits are modified by PPAD and stimulate the response to P. gingivalis infection in a TLR2-dependent manner.


Assuntos
Porphyromonas gingivalis , Receptor 2 Toll-Like , Humanos , Desiminases de Arginina em Proteínas/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fímbrias Bacterianas/metabolismo , Gengiva/microbiologia
13.
Front Immunol ; 14: 1078031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776856

RESUMO

Interactions between gingival fibroblasts (GFs) and oral pathogens contribute to the chronicity of inflammation in periodontitis. Epigenetic changes in DNA methylation are involved in periodontitis pathogenesis, and recent studies indicate that DNA methyltransferase (DNMT) inhibitors may protect against epithelial barrier disruption and bone resorption. To assess the impact of DNMT inhibition on GFs, cells were cultured with decitabine (5-aza-2'-deoxycytidine, DAC) for 12 days to induce DNA hypomethylation. We observed several potentially detrimental effects of DAC on GF biological functions. First, extended treatment with DAC reduced GF proliferation and induced necrotic cell death. Second, DAC amplified Porphyromonas gingivalis- and cytokine-induced expression and secretion of the chemokine CCL20 and several matrix metalloproteinases (MMPs), including MMP1, MMP9, and MMP13. Similar pro-inflammatory effects of DAC were observed in periodontal ligament fibroblasts. Third, DAC upregulated intercellular adhesion molecule-1 (ICAM-1), which was associated with increased P. gingivalis adherence to GFs and may contribute to bacterial dissemination. Finally, analysis of DAC-induced genes identified by RNA sequencing revealed increased expression of CCL20, CCL5, CCL8, CCL13, TNF, IL1A, IL18, IL33, and CSF3, and showed that the most affected processes were related to immune and inflammatory responses. In contrast, the genes downregulated by DAC were associated with extracellular matrix and collagen fibril organization. Our observations demonstrate that studies of DNMT inhibitors provide important insights into the role of DNA methylation in cells involved in periodontitis pathogenesis. However, the therapeutic potential of hypomethylating agents in periodontal disease may be limited due to their cytotoxic effects on fibroblast populations and stimulation of pro-inflammatory pathways.


Assuntos
Ligamento Periodontal , Periodontite , Humanos , Ligamento Periodontal/metabolismo , Metilação de DNA , Células Cultivadas , Fibroblastos/metabolismo , Homeostase , DNA/metabolismo
14.
Ann Rheum Dis ; 71(3): 424-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21953341

RESUMO

BACKGROUND: Histone deacetylase inhibitors (HDACi) display potent therapeutic efficacy in animal models of arthritis and suppress inflammatory cytokine production in rheumatoid arthritis (RA) synovial macrophages and tissue. OBJECTIVES: To determine the molecular mechanisms contributing to the suppressive effects of HDACi on RA synovial cell activation, using interleukin 6 (IL-6) regulation as a model. METHODS: RA fibroblast-like synoviocytes (FLS) and healthy donor macrophages were treated with IL-1ß, tumour necrosis factor (TNF)α, lipopolysaccharide or polyinosinic:polycytidylic acid (poly(I:C)) in the absence or presence of the HDACi trichostatin A (TSA) or ITF2357 (givinostat). IL-6 production and mRNA expression was measured by ELISA and quantitative PCR (qPCR), respectively. Protein acetylation and the activation of intracellular signalling pathways were assessed by immunoblotting. The DNA-binding activity of nuclear factor κB (NFκB) and activator protein 1 (AP-1) components was measured by ELISA-based assays. RESULTS: HDACi (0.25-1.0 µM) suppressed RA FLS IL-6 production induced by IL-1ß, TNFα and Toll-like receptor ligands. Phosphorylation of mitogen-activated protein kinases and inhibitor of κBα (IκBα) following IL-1ß stimulation were unaffected by HDACi, as were AP-1 composition and binding activity, and c-Jun induction. TSA induced a significant reduction in nuclear retention of NFκB in FLS 24 h after IL-1ß stimulation, but this did not reduce NFκB transcriptional activity or correlate temporally with reductions in IL-6 mRNA accumulation. HDACi significantly reduced the stability of IL-6 mRNA in FLS and macrophages. CONCLUSIONS: Our study identifies a novel, shared molecular mechanism by which HDACi can disrupt inflammatory cytokine production in RA synovial cells, namely the promotion of mRNA decay, and suggests that targeting HDAC activity may be clinically useful in suppressing inflammation in RA.


Assuntos
Antirreumáticos/farmacologia , Artrite Reumatoide/patologia , Inibidores de Histona Desacetilases/farmacologia , Interleucina-6/biossíntese , Membrana Sinovial/efeitos dos fármacos , Antirreumáticos/administração & dosagem , Artrite Reumatoide/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/fisiologia , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Transcrição AP-1/metabolismo
15.
Ann Rheum Dis ; 71(3): 415-23, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21953337

RESUMO

OBJECTIVES: To investigate the expression and activation of mitogen-activated protein kinases in patients with early arthritis who are disease-modifying antirheumatic drug (DMARD) naïve. METHODS: A total of 50 patients with early arthritis who were DMARD naïve (disease duration <1 year) were prospectively followed and diagnosed at baseline and after 2 years for undifferentiated arthritis (UA), rheumatoid arthritis (RA) (1987 American College of Rheumatology (ACR) and 2010 ACR/European League Against Rheumatism (EULAR) criteria), or spondyloarthritis (SpA). Synovial biopsies obtained at baseline were examined for expression and phosphorylation of p38, extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunohistochemistry and digital analysis. Synovial tissue mRNA expression was measured by quantitative PCR (qPCR). RESULTS: ERK and JNK activation was enhanced at inclusion in patients meeting RA criteria compared to other diagnoses. JNK activation was enhanced in patients diagnosed as having UA at baseline who eventually fulfilled 1987 ACR RA criteria compared to those who remained UA, and in patients with RA fulfilling 2010 ACR/EULAR criteria at baseline. ERK and JNK activation was enhanced in patients with RA developing progressive joint destruction. JNK activation in UA predicted 1987 ACR RA classification criteria fulfilment (R(2)=0.59, p=0.02) after follow-up, and disease progression in early arthritis (R(2)=0.16, p<0.05). Enhanced JNK activation in patients with persistent disease was associated with altered synovial expression of extracellular matrix components and CD44. CONCLUSIONS: JNK activation is elevated in RA before 1987 ACR RA classification criteria are met and predicts development of erosive disease in early arthritis, suggesting JNK may represent an attractive target in treating RA early in the disease process.


Assuntos
Artrite Reumatoide/diagnóstico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/enzimologia , Artrite Reumatoide/genética , Biomarcadores/metabolismo , Progressão da Doença , Diagnóstico Precoce , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Fosforilação , Prognóstico , Estudos Prospectivos , RNA Mensageiro/genética , Índice de Gravidade de Doença , Membrana Sinovial/enzimologia , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Crit Rev Immunol ; 31(3): 233-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21740352

RESUMO

Histone deacetylases (HDACs) display multi-faceted roles in coordinating the interaction of intracellular signaling pathways with chromatin remodeling and transcription factor function to finely specify gene alterations and maintenance of gene expression during cellular activation, proliferation, and differentiation. These processes, epigenetic and non-epigenetic, are critical to the development of both the adaptive and innate arms of the mammalian immune system, and the measured initiation and resolution of immune responses. Pharmacological modulators of HDAC activity have demonstrated uniformly potent anti-inflammatory effects in experimental animal models of these diseases, in relevant immune and stromal cell populations from patients, as well as initial successes in the clinic. Recent studies have identified key roles for specific HDACs in regulating immune function, as well as alterations in HDAC expression and function in a number of immune-mediated inflammatory diseases (IMIDs), which may contribute to pathology in these diseases. Here, we review recent advances in our understanding of HDAC function in the immune system, their contribution to IMIDs, and the therapeutic potential of altering HDAC activity in IMIDs.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Juvenil/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Inflamação/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Sirtuínas/metabolismo , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Artrite Juvenil/imunologia , Artrite Juvenil/metabolismo , Artrite Juvenil/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Proliferação de Células , Epigênese Genética/imunologia , Histona Desacetilases/genética , Humanos , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Transdução de Sinais/imunologia , Sirtuínas/genética , Linfócitos T/citologia , Linfócitos T/metabolismo
17.
J Immunol ; 184(5): 2718-28, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20100935

RESUMO

Macrophages contribute significantly to the pathology of many chronic inflammatory diseases, including rheumatoid arthritis (RA), asthma, and chronic obstructive pulmonary disease. Macrophage activation and survival are tightly regulated by reversible acetylation and deacetylation of histones, transcription factors, and structural proteins. Although histone deacetylase (HDAC) inhibitors (HDACis) demonstrate therapeutic effects in animal models of chronic inflammatory disease, depressed macrophage HDAC activity in patients with asthma, chronic obstructive pulmonary disease, or RA may contribute to inflammation in these diseases, potentially contraindicating the therapeutic administration of HDACis. In this study, we directly examined whether HDACis could influence the activation of macrophages derived from the inflamed joints of patients with RA. We found that inhibition of class I/II HDACs or class III sirtuin HDACs potently blocked the production of IL-6 and TNF-alpha by macrophages from healthy donors and patients with RA. Two HDACis, trichostatin A and nicotinamide, selectively induced macrophage apoptosis associated with specific downregulation of the antiapoptotic protein Bfl-1/A1, and inflammatory stimuli enhanced the sensitivity of macrophages to HDACi-induced apoptosis. Importantly, inflammatory and angiogenic cytokine production in intact RA synovial biopsy explants was also suppressed by HDACis. Our study identifies redundant, but essential, roles for class I/II and sirtuin HDACs in promoting inflammation, angiogenesis, and cell survival in RA.


Assuntos
Artrite Reumatoide/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Adulto , Idoso , Apoptose/efeitos dos fármacos , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Western Blotting , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Ácidos Hidroxâmicos/farmacologia , Inflamação/genética , Inflamação/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor , Niacinamida/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Front Immunol ; 13: 823685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432342

RESUMO

Porphyromonas gingivalis, a keystone oral pathogen implicated in development and progression of periodontitis, may also contribute to the pathogenicity of diseases such as arthritis, atherosclerosis, and Alzheimer's. P. gingivalis is a master manipulator of host immune responses due to production of a large variety of virulence factors. Among these, P. gingivalis peptidilarginine deiminase (PPAD), an enzyme unique to P. gingivalis, converts C-terminal Arg residues in bacterium- and host-derived proteins and peptides into citrulline. PPAD contributes to stimulation of proinflammatory responses in host cells and is essential for activation of the prostaglandin E2 (PGE2) synthesis pathway in gingival fibroblasts. Since P. gingivalis is recognized mainly by Toll-like receptor-2 (TLR2), we investigated the effects of PPAD activity on TLR2-dependent host cell responses to P. gingivalis, as well as to outer membrane vesicles (OMVs) and fimbriae produced by this organism. Using reporter cell lines, we found that PPAD activity was required for TLR2 activation by P. gingivalis cells and OMVs. We also found that fimbriae, an established TLR2 ligand, from wild-type ATCC 33277 (but not from its isogenic PPAD mutant) enhanced the proinflammatory responses of host cells. Furthermore, only fimbriae from wild-type ATCC 33277, but not from the PPAD-deficient strains, induced cytokine production and stimulated expression of genes within the PGE2 synthesis pathway in human gingival fibroblasts via activation of the NF-ĸB and MAP kinase-dependent signaling pathways. Analysis of ten clinical isolates revealed that type I FimA is preferable for TLR2 signaling enhancement. In conclusion, the data strongly suggest that both PPAD activity and fimbriae are important for TLR2-dependent cell responses to P. gingivalis infection.


Assuntos
Periodontite , Porphyromonas gingivalis , Dinoprostona/metabolismo , Humanos , Periodontite/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Receptor 2 Toll-Like/metabolismo
19.
Am J Pathol ; 177(6): 3010-24, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20971740

RESUMO

Changes in the expression and activation status of Ras proteins are thought to contribute to the pathological phenotype of stromal fibroblast-like synoviocytes (FLS) in rheumatoid arthritis, a prototypical immune-mediated inflammatory disease. Broad inhibition of Ras and related proteins has shown protective effects in animal models of arthritis, but each of the Ras family homologues (ie, H-, K-, and N-Ras) makes distinct contributions to cellular activation. We examined the expression of each Ras protein in synovial tissue and FLS obtained from patients with rheumatoid arthritis and other forms of inflammatory arthritis. Each Ras protein was expressed in synovial tissue and cultured FLS. Each homolog was also activated following FLS stimulation with tumor necrosis factor-α or interleukin (IL)-1ß. Constitutively active mutants of each Ras protein enhanced IL-1ß-induced FLS matrix metalloproteinase-3 production, while only active H-Ras enhanced IL-8 production. Gene silencing demonstrated that each Ras protein contributed to IL-1ß-dependent IL-6 production, while H-Ras and N-Ras supported IL-1ß-dependent matrix metalloproteinase-3 and IL-8 production, respectively. The overlap in contributions of Ras homologues to FLS activation suggests that broad targeting of Ras GTPases in vivo suppresses global inflammation and joint destruction in arthritis. Consistent with this, simultaneous silencing of H-Ras, K-Ras, and N-Ras expression significantly reduces inflammation and joint destruction in murine collagen-induced arthritis, while specific targeting of N-Ras alone is less effective in providing clinical benefits.


Assuntos
Artrite Experimental/genética , Genes ras/genética , Inflamação/genética , Articulações/patologia , Interferência de RNA/fisiologia , Adulto , Idoso , Animais , Artrite Experimental/patologia , Células Cultivadas , Estudos de Coortes , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Expressão Gênica/fisiologia , Genes ras/fisiologia , Humanos , Inflamação/patologia , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Família Multigênica , Homologia de Sequência
20.
Arthritis Rheum ; 62(11): 3289-99, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20662068

RESUMO

OBJECTIVE: Defective activation of T cell receptor-proximal signaling proteins, such as the small GTPase Rap1, is thought to contribute to the pathologic behavior of rheumatoid arthritis (RA) synovial T cells. This study was undertaken to determine whether maintaining Rap1 signaling in murine T cells modifies disease onset or severity in collagen-induced arthritis (CIA). METHODS: CIA experiments were conducted using wild-type and RapV12-transgenic mice, which express an active mutant of Rap1 in the T cell compartment. Mice were assessed using macroscopic, microscopic, and radiologic measures, and serum levels of anticollagen antibodies were measured by enzyme-linked immunosorbent assay. Phenotypic and functional characterization of wild-type and RapV12-transgenic T cells under homeostatic conditions and during disease onset was performed by flow cytometry. RESULTS: Disease incidence and severity, synovial infiltration, joint destruction, and anticollagen antibody production were significantly reduced in RapV12-transgenic mice. Although the numbers and percentages of CD3+, CD4+, and CD8+ (naive, effector, and memory) T cells, Treg cells, and Th17 cells were equivalent in wild-type and RapV12-transgenic mice, a significant decrease in the percentage of tumor necrosis factor α-secreting CD8+ T cells was observed in RapV12-transgenic mice during CIA. RapV12-transgenic T cells also inefficiently expressed inducible costimulator and CD40L costimulatory proteins involved in B cell immunoglobulin class switching. CONCLUSION: Our findings indicate that maintenance of T cell Rap1 signaling in murine T cells reduces disease incidence and severity in CIA, which are associated with specific defects in T cell effector function. Therefore, the restoration of Rap1 function in RA synovial T cells may have therapeutic benefit in RA.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Linfócitos T/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Índice de Gravidade de Doença , Transdução de Sinais/imunologia , Membrana Sinovial/imunologia , Linfócitos T/imunologia , Proteínas rap1 de Ligação ao GTP/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa