Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 23(1): 298, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143620

RESUMO

BACKGROUND: Activation of brown adipose tissue (BAT) has gained attention due to its ability to dissipate energy and counteract cardiometabolic diseases (CMDs). METHODS: This study investigated the consequences of cold exposure on the BAT and liver proteomes of an established CMD mouse model based on LDL receptor-deficient (LdlrKO) mice fed a high-fat, high-sucrose, high-cholesterol diet for 16 weeks. We analyzed energy metabolism in vivo and performed untargeted proteomics on BAT and liver of LdlrKO mice maintained at 22 °C or 5 °C for 7 days. RESULTS: We identified several dysregulated pathways, miRNAs, and transcription factors in BAT and liver of cold-exposed Ldlrko mice that have not been previously described in this context. Networks of regulatory interactions based on shared downstream targets and analysis of ligand-receptor pairs identified fibrinogen alpha chain (FGA) and fibronectin 1 (FN1) as potential crosstalk factors between BAT and liver in response to cold exposure. Importantly, genetic variations in the genes encoding FGA and FN1 have been associated with cardiometabolic-related phenotypes and traits in humans. DISCUSSION: This study describes the key factors, pathways, and regulatory networks involved in the crosstalk between BAT and the liver in a cold-exposed CMD mouse model. These findings may provide a basis for future studies aimed at testing whether molecular mediators, as well as regulatory and signaling mechanisms involved in tissue adaption upon cold exposure, could represent a target in cardiometabolic disorders.


Assuntos
Tecido Adiposo Marrom , Temperatura Baixa , Modelos Animais de Doenças , Metabolismo Energético , Redes Reguladoras de Genes , Fígado , Camundongos Knockout , Proteômica , Receptores de LDL , Transdução de Sinais , Animais , Tecido Adiposo Marrom/metabolismo , Fígado/metabolismo , Metabolismo Energético/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiência , Masculino , Fibrinogênio/metabolismo , Fibrinogênio/genética , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos , Regulação da Expressão Gênica , Mapas de Interação de Proteínas
2.
Nat Commun ; 15(1): 2516, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514628

RESUMO

ATGL is a key enzyme in intracellular lipolysis and plays an important role in metabolic and cardiovascular diseases. ATGL is tightly regulated by a known set of protein-protein interaction partners with activating or inhibiting functions in the control of lipolysis. Here, we use deep mutational protein interaction perturbation scanning and generate comprehensive profiles of single amino acid variants that affect the interactions of ATGL with its regulatory partners: CGI-58, G0S2, PLIN1, PLIN5 and CIDEC. Twenty-three ATGL amino acid variants yield a specific interaction perturbation pattern when validated in co-immunoprecipitation experiments in mammalian cells. We identify and characterize eleven highly selective ATGL switch mutations which affect the interaction of one of the five partners without affecting the others. Switch mutations thus provide distinct interaction determinants for ATGL's key regulatory proteins at an amino acid resolution. When we test triglyceride hydrolase activity in vitro and lipolysis in cells, the activity patterns of the ATGL switch variants trace to their protein interaction profile. In the context of structural data, the integration of variant binding and activity profiles provides insights into the regulation of lipolysis and the impact of mutations in human disease.


Assuntos
Lipase , Lipólise , Animais , Humanos , Lipólise/genética , Lipase/genética , Lipase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sítios de Ligação , Aminoácidos/metabolismo , Mutação , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa