Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 539(7628): 248-253, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27783592

RESUMO

The ability of the adult mammalian brain to compensate for neuronal loss caused by injury or disease is very limited. Transplantation aims to replace lost neurons, but the extent to which new neurons can integrate into existing circuits is unknown. Here, using chronic in vivo two-photon imaging, we show that embryonic neurons transplanted into the visual cortex of adult mice mature into bona fide pyramidal cells with selective pruning of basal dendrites, achieving adult-like densities of dendritic spines and axonal boutons within 4-8 weeks. Monosynaptic tracing experiments reveal that grafted neurons receive area-specific, afferent inputs matching those of pyramidal neurons in the normal visual cortex, including topographically organized geniculo-cortical connections. Furthermore, stimulus-selective responses refine over the course of many weeks and finally become indistinguishable from those of host neurons. Thus, grafted neurons can integrate with great specificity into neocortical circuits that normally never incorporate new neurons in the adult brain.


Assuntos
Embrião de Mamíferos/citologia , Neocórtex/citologia , Vias Neurais , Neurônios/fisiologia , Neurônios/transplante , Córtex Visual/citologia , Vias Aferentes , Animais , Axônios/metabolismo , Diferenciação Celular , Rastreamento de Células , Espinhas Dendríticas/metabolismo , Vias Eferentes , Camundongos , Neocórtex/fisiologia , Neurônios/citologia , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/citologia , Células Piramidais/fisiologia , Córtex Visual/fisiologia
3.
Glia ; 64(12): 2201-2218, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27615452

RESUMO

NG2-glia in the adult brain are known to proliferate and differentiate into mature and myelinating oligodendrocytes throughout lifetime. However, the role of these newly generated oligodendrocytes in the adult brain still remains little understood. Here we took advantage of the Sox10-iCreERT2 x CAG-eGFP x Esco2fl/fl mouse line in which we can specifically ablate proliferating NG2-glia in adult animals. Surprisingly, we observed that the generation of new oligodendrocytes in the adult brain was severely affected, although the number of NG2-glia remained stable due to the enhanced proliferation of non-recombined cells. This lack of oligodendrogenesis led to the elongation of the nodes of Ranvier as well as the associated paranodes, which could be locally rescued by myelinating oligodendrocytes differentiated from transplanted NG2-glia deriving from wildtype mice. Repetitive measurements of conduction velocity in the corpus callosum of awake animals revealed a progressive deceleration specifically in the mice lacking adult oligodendrogenesis that resulted in progressive motor deficits. In summary, here we demonstrated for the first time that axon function is not only controlled by the reliable organization of myelin, but also requires a dynamic and continuous generation of new oligodendrocytes in the adult brain. GLIA 2016;64:2201-2218.


Assuntos
Transtornos dos Movimentos/cirurgia , Bainha de Mielina/patologia , Neuroglia/fisiologia , Neuroglia/transplante , Oligodendroglia/patologia , Potenciais de Ação/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Corpo Caloso/patologia , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/patologia , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/fisiologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Caminhada
4.
Stem Cells ; 30(4): 773-84, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22893458

RESUMO

Neural stem/progenitor cells present in the subventricular zone (SVZ) are a potential source of repairing cells after injury. Therefore, the identification of novel players that modulate neural stem cells differentiation can have a huge impact in stem cell-based therapies. Herein, we describe a unique role of histamine in inducing functional neuronal differentiation from cultured mouse SVZ stem/progenitor cells. This proneurogenic effect depends on histamine 1 receptor activation and involves epigenetic modifications and increased expression of Mash1, Dlx2, and Ngn1 genes. Biocompatible poly (lactic-co-glycolic acid) microparticles, engineered to release histamine in a controlled and prolonged manner, also triggered robust neuronal differentiation in vitro. Preconditioning with histamine-loaded microparticles facilitated neuronal differentiation of SVZ-GFP cells grafted in hippocampal slices and in in vivo rodent brain. We propose that neuronal commitment triggered by histamine per se or released from biomaterial-derived vehicles may represent a new tool for brain repair strategies.


Assuntos
Histamina/farmacologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Histamina/administração & dosagem , Histamina/química , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Ventrículos Laterais/citologia , Ventrículos Laterais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
5.
Sci Adv ; 8(23): eabg9445, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687687

RESUMO

Cell transplantation is a promising approach for the reconstruction of neuronal circuits after brain damage. Transplanted neurons integrate with remarkable specificity into circuitries of the mouse cerebral cortex affected by neuronal ablation. However, it remains unclear how neurons perform in a local environment undergoing reactive gliosis, inflammation, macrophage infiltration, and scar formation, as in traumatic brain injury (TBI). To elucidate this, we transplanted cells from the embryonic mouse cerebral cortex into TBI-injured, inflamed-only, or intact cortex of adult mice. Brain-wide quantitative monosynaptic rabies virus (RABV) tracing unraveled graft inputs from correct regions across the brain in all conditions, with pronounced quantitative differences: scarce in intact and inflamed brain versus exuberant after TBI. In the latter, the initial overshoot is followed by pruning, with only a few input neurons persisting at 3 months. Proteomic profiling identifies candidate molecules for regulation of the synaptic yield, a pivotal parameter to tailor for functional restoration of neuronal circuits.

6.
Sci Adv ; 8(23): eabg9287, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687689

RESUMO

Transplantation is a clinically relevant approach for brain repair, but much remains to be understood about influences of the disease environment on transplant connectivity. To explore the effect of amyloid pathology in Alzheimer's disease (AD) and aging, we examined graft connectivity using monosynaptic rabies virus tracing in APP/PS1 mice and in 16- to 18-month-old wild-type (WT) mice. Transplanted neurons differentiated within 4 weeks and integrated well into the host visual cortex, receiving input from the appropriate brain regions for this area. Unexpectedly, we found a prominent several-fold increase in local inputs, in both amyloid-loaded and aged environments. State-of-the-art deep proteome analysis using mass spectrometry highlights complement system activation as a common denominator of environments promoting excessive local input connectivity. These data therefore reveal the key role of the host pathology in shaping the input connectome, calling for caution in extrapolating results from one pathological condition to another.

7.
Stem Cells ; 26(9): 2361-71, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18583543

RESUMO

Tumor necrosis factor (TNF)-alpha has been reported to modulate brain injury, but remarkably, little is known about its effects on neurogenesis. We report that TNF-alpha strongly influences survival, proliferation, and neuronal differentiation in cultured subventricular zone (SVZ) neural stem/progenitor cells derived from the neonatal P1-3 C57BL/6 mice. By using single-cell calcium imaging, we developed a method, based on cellular response to KCl and/or histamine, that allows the functional evaluation of neuronal differentiation. Exposure of SVZ cultures to 1 and 10 ng/ml mouse or 1 ng/ml human recombinant TNF-alpha resulted in increased differentiation of cells displaying a neuronal-like profile of [Ca2+](i) responses, compared with the predominant profile of immature cells observed in control, nontreated cultures. Moreover, by using neutralizing antibodies for each TNF-alpha receptor, we found that the proneurogenic effect of 1 ng/ml TNF-alpha is mediated via tumor necrosis factor receptor 1 activation. Accordingly, the percentage of neuronal nuclear protein-positive neurons was increased following exposure to mouse TNF-alpha. Interestingly, exposure of SVZ cultures to 1 ng/ml TNF-alpha induced cell proliferation, whereas 10 and 100 ng/ml TNF-alpha induced apoptotic cell death. Moreover, we found that exposure of SVZ cells to TNF-alpha for 15 minutes or 6 hours caused an increase in the phospho-stress-activated protein kinase/c-Jun N-terminal kinase immunoreactivity initially in the nucleus and then in growing axons, colocalizing with tau, consistent with axonogenesis. Taken together, these results show that TNF-alpha induces neurogenesis in neonatal SVZ cell cultures of mice. TNF-alpha, a proinflammatory cytokine and a proneurogenic factor, may play a central role in promoting neurogenesis and brain repair in response to brain injury and infection.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neurônios/citologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Neurônios/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
8.
Stem Cells ; 26(6): 1636-45, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18388302

RESUMO

Stem cells of the subventricular zone (SVZ) represent a reliable source of neurons for cell replacement. Neuropeptide Y (NPY) promotes neurogenesis in the hippocampal subgranular layer and the olfactory epithelium and may be useful for the stimulation of SVZ dynamic in brain repair purposes. We describe that NPY promotes SVZ neurogenesis. NPY (1 microM) treatments increased proliferation at 48 hours and neuronal differentiation at 7 days in SVZ cell cultures. NPY proneurogenic properties are mediated via the Y1 receptor. Accordingly, Y1 receptor is a major active NPY receptor in the mouse SVZ, as shown by functional autoradiography. Moreover, short exposure to NPY increased immunoreactivity for the phosphorylated form of extracellular signal-regulated kinase 1/2 in the nucleus, compatible with a trigger for proliferation, whereas 6 hours of treatment amplified the phosphorylated form of c-Jun-NH(2)-terminal kinase signal in growing axons, consistent with axonogenesis. NPY, as a promoter of SVZ neurogenesis, is a crucial factor for future development of cell-based brain therapy. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Ventrículos Cerebrais/citologia , Neurônios/citologia , Neuropeptídeo Y/farmacologia , Animais , Cálcio/fisiologia , Morte Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Ventrículos Cerebrais/efeitos dos fármacos , Ventrículos Cerebrais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
9.
Rejuvenation Res ; 11(1): 187-200, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18279032

RESUMO

Subventricular zone (SVZ) cell cultures contain mixed populations of immature cells, neurons, astrocytes, and progenitors in different stages of development. In the present work, we examined whether cell types of the SVZ could be functionally discriminated on the basis of intracellular free calcium level ([Ca(2+)](i)) variations following KCl and histamine stimulation. For this purpose, [Ca(2+)](i) were measured in SVZ cell cultures from neonatal P1-3 C57Bl/6 donor mice, in single cells, after stimulation with 100 microM histamine or 50 mM KCl. MAP-2-positive neurons and doublecortin-positive neuroblasts were distinguished on the basis of their selective ratio of response to KCl and/or histamine stimulation. Moreover, we could distinguish immature cells on the basis of the selective response to histamine via the histamine 1 receptor activation. Exposure of SVZ cultures to the pro-neurogenic stem cell factor (SCF) induced an increase in the number of cells responding to KCl and a decrease in the number of cells responding to histamine, consistent with neuronal differentiation. The selective response to KCl/histamine in single cell calcium imaging analysis offers a rapid and efficient way for the functional discrimination of neuronal differentiation in SVZ cell cultures, opening new perspectives for the search of potential pro-neurogenic factors.


Assuntos
Ventrículos Cerebrais/efeitos dos fármacos , Histamina/farmacologia , Neurônios/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/fisiologia , Histamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Cloreto de Potássio/farmacologia , Receptores Histamínicos/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia
10.
Cell Stem Cell ; 22(6): 865-878.e8, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29779889

RESUMO

One hallmark of adult neurogenesis is its adaptability to environmental influences. Here, we uncovered the epithelial sodium channel (ENaC) as a key regulator of adult neurogenesis as its deletion in neural stem cells (NSCs) and their progeny in the murine subependymal zone (SEZ) strongly impairs their proliferation and neurogenic output in the olfactory bulb. Importantly, alteration of fluid flow promotes proliferation of SEZ cells in an ENaC-dependent manner, eliciting sodium and calcium signals that regulate proliferation via calcium-release-activated channels and phosphorylation of ERK. Flow-induced calcium signals are restricted to NSCs in contact with the ventricular fluid, thereby providing a highly specific mechanism to regulate NSC behavior at this special interface with the cerebrospinal fluid. Thus, ENaC plays a central role in regulating adult neurogenesis, and among multiple modes of ENaC function, flow-induced changes in sodium signals are critical for NSC biology.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Líquido Extracelular/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Líquido Extracelular/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia
11.
NPJ Regen Med ; 2: 29, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302363

RESUMO

Lifelong neurogenesis and incorporation of newborn neurons into mature neuronal circuits operates in specialized niches of the mammalian brain and serves as role model for neuronal replacement strategies. However, to which extent can the remaining brain parenchyma, which never incorporates new neurons during the adulthood, be as plastic and readily accommodate neurons in networks that suffered neuronal loss due to injury or neurological disease? Which microenvironment is permissive for neuronal replacement and synaptic integration and which cells perform best? Can lost function be restored and how adequate is the participation in the pre-existing circuitry? Could aberrant connections cause malfunction especially in networks dominated by excitatory neurons, such as the cerebral cortex? These questions show how important connectivity and circuitry aspects are for regenerative medicine, which is the focus of this review. We will discuss the impressive advances in neuronal replacement strategies and success from exogenous as well as endogenous cell sources. Both have seen key novel technologies, like the groundbreaking discovery of induced pluripotent stem cells and direct neuronal reprogramming, offering alternatives to the transplantation of fetal neurons, and both herald great expectations. For these to become reality, neuronal circuitry analysis is key now. As our understanding of neuronal circuits increases, neuronal replacement therapy should fulfill those prerequisites in network structure and function, in brain-wide input and output. Now is the time to incorporate neural circuitry research into regenerative medicine if we ever want to truly repair brain injury.

13.
Front Cell Neurosci ; 10: 284, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018177

RESUMO

Neurogenesis in the subventricular zone (SVZ) is regulated by diffusible factors and cell-cell contacts. In vivo, SVZ stem cells are associated with the abluminal surface of blood vessels and such interactions are thought to regulate their neurogenic capacity. SVZ neural stem cells (NSCs) have been described to contact endothelial-derived laminin via α6ß1 integrin. To elucidate whether heterocellular contacts with brain endothelial cells (BEC) regulate SVZ cells neurogenic capacities, cocultures of SVZ neurospheres and primary BEC, both obtained from C57BL/6 mice, were performed. The involvement of laminin-integrin interactions in SVZ homeostasis was tested in three ways. Firstly, SVZ cells were analyzed following incubation of BEC with the protein synthesis inhibitor cycloheximide (CHX) prior to coculture, a treatment expected to decrease membrane proteins. Secondly, SVZ cells were cocultured with BEC in the presence of an anti-α6 integrin neutralizing antibody. Thirdly, BEC were cultured with ß1-/- SVZ cells. We showed that contact with BEC supports, at least in part, proliferation and stemness of SVZ cells, as evaluated by the number of BrdU positive (+) and Sox2+ cells in contact with BEC. These effects are dependent on BEC-derived laminin binding to α6ß1 integrin and are decreased in cocultures incubated with anti-α6 integrin neutralizing antibody and in cocultures with SVZ ß1-/- cells. Moreover, BEC-derived laminin sustains stemness in SVZ cell cultures via activation of the Notch and mTOR signaling pathways. Our results show that BEC/SVZ interactions involving α6ß1 integrin binding to laminin, contribute to SVZ cell proliferation and stemness.

14.
Front Cell Neurosci ; 8: 59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24578683

RESUMO

Neural stem cells (NSCs) from the subventricular zone (SVZ) have been indicated as a source of new oligodendrocytes to use in regenerative medicine for myelin pathologies. Indeed, NSCs are multipotent cells that can self-renew and differentiate into all neural cell types of the central nervous system. In normal conditions, SVZ cells are poorly oligodendrogenic, nevertheless their oligodendrogenic potential is boosted following demyelination. Importantly, progressive restriction into the oligodendrocyte fate is specified by extrinsic and intrinsic factors, endocannabinoids being one of these factors. Although a role for endocannabinoids in oligodendrogenesis has already been foreseen, selective agonists and antagonists of cannabinoids receptors produce severe adverse side effects. Herein, we show that hemopressin (Hp), a modulator of CB1 receptors, increased oligodendroglial differentiation in SVZ neural stem/progenitor cell cultures derived from neonatal mice. The original results presented in this work suggest that Hp and derivates may be of potential interest for the development of future strategies to treat demyelinating diseases.

15.
Int J Dev Neurosci ; 31(7): 692-700, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23340483

RESUMO

Mobilization of remyelinating cells spontaneously occurs in the adult brain. These cellular resources are specially active after demyelinating episodes in early phases of multiple sclerosis (MS). Indeed, oligodendrocyte precursor cells (OPCs) actively proliferate, migrate to and repopulate the lesioned areas. Ultimately, efficient remyelination is accomplished when new oligodendrocytes reinvest nude neuronal axons, restoring the normal properties of impulse conduction. As the disease progresses this fundamental process fails. Multiple causes seem to contribute to such transient decline, including the failure of OPCs to differentiate and enwrap the vulnerable neuronal axons. Regenerative medicine for MS has been mainly centered on the recruitment of endogenous self-repair mechanisms, or on transplantation approaches. The latter commonly involves grafting of neural precursor cells (NPCs) or neural stem cells (NSCs), with myelinogenic potential, in the injured areas. Both strategies require further understanding of the biology of oligodendrocyte differentiation and remyelination. Indeed, the success of transplantation largely depends on the pre-commitment of transplanted NPCs or NSCs into oligodendroglial cell type, while the endogenous differentiation of OPCs needs to be boosted in chronic stages of the disease. Thus, much effort has been focused on finding molecular targets that drive oligodendrocytes commitment and development. The present review explores several aspects of remyelination that must be considered in the design of a cell-based therapy for MS, and explores more deeply the challenge of fostering oligodendrogenesis. In this regard, we discuss herein a tool developed in our research group useful to search novel oligodendrogenic factors and to study oligodendrocyte differentiation in a time- and cost-saving manner.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Neurais/fisiologia , Animais , Humanos , Oligodendroglia/fisiologia
16.
PLoS One ; 8(1): e55039, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383048

RESUMO

Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ) into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS). The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Movimento Celular , Neostriado/irrigação sanguínea , Neostriado/patologia , Neurônios/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Receptor trkB/genética , Receptores de Fator de Crescimento Neural/genética
17.
Methods Mol Biol ; 879: 165-78, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22610560

RESUMO

Directing neural stem cells (NSCs) differentiation towards oligodendroglial cell lineage is a crucial step in the endeavor of developing cell replacement-based therapies for demyelinating diseases. Evaluation of NSCs differentiation is mostly performed by methodologies that use fixed cells, like immunocytochemistry, or lysates, like Western blot. On the other hand, electrophysiology allows differentiation studies on living cells, but it is highly time-consuming and endowed with important limitations concerning population studies. Herein, we describe a functional method, based on single cell calcium imaging, which accurately and rapidly distinguishes cell types among NSCs progeny, in living cultures prepared from the major reservoir of NSCs in the postnatal mouse brain, the subventricular zone (SVZ). Indeed, by applying a rational sequence of three stimuli-KCl, histamine, and thrombin-to the heterogeneous SVZ cell population, one can identify each cell phenotype according to its unique calcium signature. Mature oligodendrocytes, the myelin-forming cells of the central nervous system, are the thrombin-responsive cells in SVZ cell culture and display no intracellular calcium increase upon KCl or histamine perfusion. On the other hand, KCl and histamine stimulate neurons and immature cells, respectively. The method described in this chapter is a valuable tool to identify novel pro-oligodendrogenic compounds, which may play an important role in the design of future treatments for demyelinating disorders such as multiple sclerosis.


Assuntos
Separação Celular/métodos , Rastreamento de Células/métodos , Imagem Molecular/métodos , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo
18.
Curr Stem Cell Res Ther ; 6(3): 288-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21476976

RESUMO

Neurogenesis in the adult mammalian brain occurs in two specific brain areas, the subventricular zone (SVZ) bordering the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. Although these regions are prone to produce new neurons, cultured cells from these neurogenic niches tend to be mixed cultures, containing both neurons and glial cells. Several reports highlight the potential of the self-healing capacity of the brain following injury. Even though much knowledge has been produced on the neurogenesis itself, brain repairing strategies are still far away from patients cure. Here we review general concepts in the neurogenesis field, also addressing the methods available to study neural stem cell differentiation. A major problem faced by research groups and companies dedicated to brain regenerative medicine resides on the lack of good methods to functionally identify neural stem cell differentiation and novel drug targets. To address this issue, we developed a unique single cell calcium imaging-based method to functionally discriminate different cell types derived from SVZ neural stem cell cultures. The unique functional profile of each SVZ cell type was correlated at the single cell level with the immunodetection of specific phenotypic markers. This platform was raised on the basis of the functional response of neurons, oligodendrocytes and immature cells to depolarising agents, to thrombin and to histamine, respectively. We also outline key studies in which our new platform was extremely relevant in the context of drug discovery and development in the area of brain regenerative medicine.


Assuntos
Sinalização do Cálcio , Diferenciação Celular , Células-Tronco Neurais/citologia , Análise de Célula Única/métodos , Animais , Encéfalo/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Ventrículos Laterais/citologia , Ventrículos Laterais/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese , Regeneração
19.
Rejuvenation Res ; 13(1): 27-37, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20230276

RESUMO

Current immunosuppressive treatments for central nervous system demyelinating diseases fail to prevent long-term motor and cognitive decline in patients. Excitingly, glial cell transplantation arises as a promising complementary strategy to challenge oligodendrocytes loss occurring in myelination disorders. A potential source of new oligodendrocytes is the subventricular zone (SVZ) pool of multipotent neural stem cells. However, this approach has been handicapped by the lack of functional methods for identification and pharmacological analysis of differentiating oligodendrocytes, prior to transplantation. In this study, we questioned whether SVZ-derived oligodendrocytes could be functionally discriminated due to intracellular calcium level ([Ca(2+)](i)) variations following KCl, histamine, and thrombin stimulations. Previously, we have shown that SVZ-derived neurons and immature cells can be discriminated on the basis of their selective [Ca(2+)](i) rise upon KCl and histamine stimulation, respectively. Herein, we demonstrate that O4+ and proteolipid protein-positive (PLP+) oligodendrocytes do not respond to these stimuli, but display a robust [Ca(2+)](i) rise following thrombin stimulation, whereas other cell types are thrombin-insensitive. Thrombin-induced Ca(2+) increase in oligodendrocytes is mediated by protease-activated receptor-1 (PAR-1) activation and downstream signaling through G(q/11) and phospholipase C (PLC), resulting in Ca(2+) recruitment from intracellular compartments. This method allows the analysis of functional properties of oligodendrocytes in living SVZ cultures, which is of major interest for the development of effective grafting strategies in the demyelinated brain. Additionally, it opens new perspectives for the search of new pro-oligodendrogenic factors to be used prior grafting.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Neurônios/citologia , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Trombina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ventrículos Cerebrais/citologia , Histamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo , Cloreto de Potássio/farmacologia , Receptor PAR-1/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa