Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Diabetologia ; 64(4): 878-889, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33483762

RESUMO

AIMS/HYPOTHESIS: Stimulator of IFN genes (STING) is a central hub for cytosolic nucleic acid sensing and its activation results in upregulation of type I IFN production in innate immune cells. A type I IFN gene signature seen before the onset of type 1 diabetes has been suggested as a driver of disease initiation both in humans and in the NOD mouse model. A possible source of type I IFN is through activation of the STING pathway. Recent studies suggest that STING also has antiproliferative and proapoptotic functions in T cells that are independent of IFN. To investigate whether STING is involved in autoimmune diabetes, we examined the impact of genetic deletion of STING in NOD mice. METHODS: CRISPR/Cas9 gene editing was used to generate STING-deficient NOD mice. Quantitative real-time PCR was used to assess the level of type I IFN-regulated genes in islets from wild-type and STING-deficient NOD mice. The number of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214-specific CD8+ T cells was determined by magnetic bead-based MHC tetramer enrichment and flow cytometry. The incidence of spontaneous diabetes and diabetes after adoptive transfer of T cells was determined. RESULTS: STING deficiency partially attenuated the type I IFN gene signature in islets but did not suppress insulitis. STING-deficient NOD mice accumulated an increased number of IGRP206-214-specific CD8+ T cells (2878 ± 642 cells in NOD.STING-/- mice and 728.8 ± 196 cells in wild-type NOD mice) in peripheral lymphoid tissue, associated with a higher incidence of spontaneous diabetes (95.5% in NOD.STING-/- mice and 86.2% in wild-type NOD mice). Splenocytes from STING-deficient mice rapidly induced diabetes after adoptive transfer into irradiated NOD recipients (median survival 75 days for NOD recipients of NOD.STING-/- mouse splenocytes and 121 days for NOD recipients of NOD mouse splenocytes). CONCLUSIONS/INTERPRETATION: Data suggest that sensing of endogenous nucleic acids through the STING pathway may be partially responsible for the type I IFN gene signature but not autoimmunity in NOD mice. Our results show that the STING pathway may play an unexpected intrinsic role in suppressing the number of diabetogenic T cells.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Transferência Adotiva , Animais , Autoimunidade , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Ilhotas Pancreáticas/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos NOD , Camundongos Knockout , Transdução de Sinais
2.
Immunol Cell Biol ; 94(4): 334-41, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26446877

RESUMO

In type 1 diabetes, cytotoxic CD8(+) T lymphocytes (CTLs) directly interact with pancreatic beta cells through major histocompatibility complex class I. An immune synapse facilitates delivery of cytotoxic granules, comprised mainly of granzymes and perforin. Perforin deficiency protects the majority of non-obese diabetic (NOD) mice from autoimmune diabetes. Intriguingly perforin deficiency does not prevent diabetes in CD8(+) T-cell receptor transgenic NOD8.3 mice. We therefore investigated the importance of perforin-dependent killing via CTL-beta cell contact in autoimmune diabetes. Perforin-deficient CTL from NOD mice or from NOD8.3 mice were significantly less efficient at adoptive transfer of autoimmune diabetes into NODRag1(-/-) mice, confirming that perforin is essential to facilitate beta cell destruction. However, increasing the number of transferred in vitro-activated perforin-deficient 8.3 T cells reversed the phenotype and resulted in diabetes. Perforin-deficient NOD8.3 T cells were present in increased proportion in islets, and proliferated more in response to antigen in vivo indicating that perforin may regulate the activation of CTLs, possibly by controlling cytokine production. This was confirmed when we examined the requirement for direct interaction between beta cells and CD8(+) T cells in NOD8.3 mice, in which beta cells specifically lack major histocompatibility complex (MHC) class I through conditional deletion of ß2-microglobulin. Although diabetes was significantly reduced, 40% of these mice developed diabetes, indicating that NOD8.3 T cells can kill beta cells in the absence of direct interaction. Our data indicate that although perforin delivery is the main mechanism that CTL use to destroy beta cells, they can employ alternative mechanisms to induce diabetes in a perforin-independent manner.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Perforina/metabolismo , Animais , Autoantígenos/imunologia , Células Cultivadas , Citotoxicidade Imunológica/genética , Modelos Animais de Doenças , Humanos , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Comunicação Parácrina , Perforina/genética , Perforina/imunologia
3.
J Immunol ; 192(2): 572-80, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24337380

RESUMO

CD8(+) T cells are critical in human type 1 diabetes and in the NOD mouse. In this study, we elucidated the natural history of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific CD8(+) T cells in NOD diabetes using MHC-tetramer technology. IGRP206-214-specific T cells in the peripheral lymphoid tissue increased with age, and their numbers correlated with insulitis progression. IGRP206-214-specific T cells in the peripheral lymphoid tissue expressed markers of chronic Ag stimulation, and their numbers were stable after diagnosis of diabetes, consistent with their memory phenotype. IGRP206-214-specific T cells in NOD mice expand, acquire the phenotype of effector-memory T cells in the islets, and emigrate to the peripheral lymphoid tissue. Our observations suggest that enumeration of effector-memory T cells of multiple autoantigen specificities in the periphery of type 1 diabetic subjects could be a reliable reporter for progression of islet pathology.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Memória Imunológica/imunologia , Ilhotas Pancreáticas/imunologia , Animais , Autoantígenos/imunologia , Diabetes Mellitus Tipo 1/patologia , Glucose-6-Fosfatase/imunologia , Ilhotas Pancreáticas/patologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos NOD
4.
Nutr Diet ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804022

RESUMO

AIMS: Immune checkpoint inhibitor therapy used for lung cancer has significantly changed response and survival rates, however, the impact on patients' nutritional status remains largely unexplored. This review aims to identify common adverse events that increase nutrition risk induced in non-small cell lung cancer patients treated with immune checkpoint inhibitor therapy and assess impact on nutritional status. METHODS: PubMed, Medline and CINAHL were systematically searched in September 2023 for randomised controlled trials comparing immune checkpoint inhibitor treatment of non-small cell lung cancer to a control group. Treatment-related adverse events that increased nutrition impact symptoms identified in the patient-generated subjective global assessment and clinical guidelines were extracted and qualitatively analysed. Risk of bias was assessed using Cochrane Risk of Bias tool 2. RESULTS: Eleven eligible randomised controlled trial studies were identified and analysed. The data demonstrated immune checkpoint inhibitor treatment was associated with a lower percentage of reported nutrition impact symptoms, for example, decreased appetite, nausea, vomiting, compared to chemotherapy treatment. Conversely, immune checkpoint inhibitor treated patients recorded a greater percentage of immune-related adverse events that alter metabolism or nutrient absorption. CONCLUSION: Non-small cell lung cancer patients treated with immune checkpoint inhibitors still experience nutrition impact symptoms but less frequently than patients treated with chemotherapy. This combined with unique nutrition-related consequences from colitis and thyroid disorders induced by immune checkpoint inhibitor therapy indicates patients should be screened, assessed and interventions implemented to improve nutrition.

5.
Eur J Immunol ; 42(7): 1717-22, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22585671

RESUMO

Infiltration of pancreatic islets by immune cells, termed insulitis, increases progressively once it begins and leads to clinical type 1 diabetes. But even after diagnosis some islets remain unaffected and infiltration is patchy rather than uniform. Traffic of autoreactive T cells into the pancreas is likely to contribute to insulitis progression but it could also depend on T-cell proliferation within islets. This study utilizes transgenic NOD mice to assess the relative contributions of these two mechanisms. Progression of insulitis in NOD8.3 TCR transgenic mice was mildly reduced by inhibition of T-cell migration with the drug FTY720. In FTY720-treated mice, reduced beta cell MHC class I expression prevented progression of insulitis both within affected islets and to previously unaffected islets. CTL proliferation was significantly reduced in islets with reduced or absent beta cell expression of MHC class I protein. This indicates that intra-islet proliferation, apparently dependent on beta cell antigen presentation, in addition to recruitment, is a significant factor in progression of insulitis.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Proliferação de Células , Diabetes Mellitus Tipo 1/patologia , Progressão da Doença , Cloridrato de Fingolimode , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Imuno-Histoquímica , Imunossupressores/farmacologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Propilenoglicóis/farmacologia , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Linfócitos T Citotóxicos/citologia
6.
J Immunol ; 187(4): 1702-12, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21734073

RESUMO

TNF has been implicated in the pathogenesis of type 1 diabetes. When administered early in life, TNF accelerates and increases diabetes in NOD mice. However, when administered late, TNF decreases diabetes incidence and delays onset. TNFR1-deficient NOD mice were fully protected from diabetes and only showed mild peri-insulitis. To further dissect how TNFR1 deficiency affects type 1 diabetes, these mice were crossed to ß cell-specific, highly diabetogenic TCR transgenic I-A(g7)-restricted NOD4.1 mice and Kd-restricted NOD8.3 mice. TNFR1-deficient NOD4.1 and NOD8.3 mice were protected from diabetes and had significantly less insulitis compared with wild type NOD4.1 and NOD8.3 controls. Diabetic NOD4.1 mice rejected TNFR1-deficient islet grafts as efficiently as control islets, confirming that TNFR1 signaling is not directly required for ß cell destruction. Flow cytometric analysis showed a significant increase in the number of CD4(+)CD25(+)Foxp3(+) T regulatory cells in TNFR1-deficient mice. TNFR1-deficient T regulatory cells were functionally better at suppressing effector cells than were wild type T regulatory cells both in vitro and in vivo. This study suggests that blocking TNF signaling may be beneficial in increasing the function of T regulatory cells and suppression of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Diabetes Mellitus Tipo 1/genética , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Células Secretoras de Insulina/transplante , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais/genética , Transplante Homólogo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
7.
Clin Nutr ; 42(3): 255-268, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716618

RESUMO

BACKGROUND & AIMS: The predictive validity of the GLIM criteria for survival, length of hospital stay (LOHS) and post-operative complications among people with cancer have not been systematically reviewed. This systematic review aims to determine whether GLIM malnutrition is predictive of these outcomes, and whether the predictive validity is affected by how phenotypic and etiologic criteria are assessed. METHODS: Cohort studies published after 2018 were systematically reviewed according to PRISMA guidelines from Embase, Medline Complete and CINAHL Complete. Risk of bias and methodologic quality were assessed using the Journal of the Academy of Nutrition and Dietetics' Quality Criteria Checklist tool for Primary research. RESULTS: In total, 21 studies were included, including 28,726 participants. All studies investigated survival, where 18 reported GLIM malnutrition is associated with decreased survival. LOHS was investigated in six studies, with all finding an association between GLIM malnutrition and longer LOHS. Post-operative complications were assessed in seven studies, of which five reported GLIM malnutrition was predictive of increased post-operative complications. Methods to assess the GLIM phenotypic and etiologic criteria varied, with consistent predictive ability for survival regardless of method of assessing reduced muscle mass. However, predictive ability was more variable across different measures of inflammation and reduced intake. CONCLUSION: GLIM malnutrition was consistently predictive of worse clinical outcomes. Different measures of reduced muscle mass did not affect the predictive ability of GLIM for survival. However, variation in assessment of the etiologic criteria resulted in varying predictive ability of the GLIM diagnosis for survival.


Assuntos
Desnutrição , Neoplasias , Humanos , Liderança , Tempo de Internação , Neoplasias/complicações , Neoplasias/cirurgia , Desnutrição/complicações , Estado Nutricional , Complicações Pós-Operatórias/epidemiologia , Avaliação Nutricional
8.
J Biol Chem ; 286(8): 6165-74, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21138834

RESUMO

The human α2ß1 integrin binds collagen and acts as a cellular receptor for rotaviruses and human echovirus 1. These ligands require the inserted (I) domain within the α2 subunit of α2ß1 for binding. Previous studies have identified the binding sites for collagen and echovirus 1 in the α2 I domain. We used CHO cells expressing mutated α2ß1 to identify amino acids involved in binding to human and animal rotaviruses. Residues where mutation affected rotavirus binding were located in several exposed loops and adjacent regions of the α2 I domain. Binding by all rotaviruses was eliminated by mutations in the activation-responsive αC-α6 and αF helices. This is a novel feature that distinguishes rotavirus from other α2ß1 ligands. Mutation of residues that co-ordinate the metal ion (Ser-153, Thr-221, and Glu-256 in α2 and Asp-130 in ß1) and nearby amino acids (Ser-154, Gln-215, and Asp-219) also inhibited rotavirus binding. The importance of most of these residues was greatest for binding by human rotaviruses. These mutations inhibit collagen binding to α2ß1 (apart from Glu-256) but do not affect echovirus binding. Overall, residues where mutation affected both rotavirus and collagen recognition are located at one side of the metal ion-dependent adhesion site, whereas those important for collagen alone cluster nearby. Mutations eliminating rotavirus and echovirus binding are distinct, consistent with the respective preference of these viruses for activated or inactive α2ß1. In contrast, rotavirus and collagen utilize activated α2ß1 and show an overlap in α2ß1 residues important for binding.


Assuntos
Integrina alfa2beta1/metabolismo , Infecções por Rotavirus/metabolismo , Rotavirus/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Enterovirus Humano B/genética , Enterovirus Humano B/metabolismo , Infecções por Enterovirus/genética , Infecções por Enterovirus/metabolismo , Humanos , Integrina alfa2beta1/genética , Mutação , Mapeamento de Peptídeos/métodos , Rotavirus/genética , Infecções por Rotavirus/genética
9.
Immunol Cell Biol ; 90(2): 243-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21383770

RESUMO

CD8(+) T cells kill pancreatic ß-cells in a cell-cell contact-dependent mechanism in the non-obese diabetic mouse. CD4(+) T lymphocytes are also able to kill pancreatic ß-cells, but they do not directly contact ß-cells and may use another cell type as the actual cytotoxic cell. Natural killer (NK) cells could have this role but it is uncertain whether they are cytotoxic towards ß-cells. Therefore, the requirement for NK cells in ß-cell destruction in the CD4-dependent T-cell antigen receptor transgenic NOD4.1 mice was examined. NK cells failed to kill ß-cells in vitro, even in the absence of major histocompatibility complex class I. We observed only 9.7±1.1% of islet infiltrating NK cells from NOD4.1 mice expressing the degranulation marker CD107a. Diabetogenic CD4(+) T cells transferred disease to NODscid.IL2Rγ(-/-) mice lacking NK cells, indicating that NK cells do not contribute to ß-cell death in vitro or in vivo. However, depletion of NK cells reduced diabetes incidence in NOD4.1 mice, suggesting that NK cells may help to maintain the right environment for cytotoxicity of effector cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Células Matadoras Naturais/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Diabetes Mellitus Tipo 1/genética , Antígenos HLA-A/imunologia , Células Secretoras de Insulina/citologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Receptores de Interleucina-2/genética
10.
Am J Pathol ; 178(6): 2716-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21641394

RESUMO

Cytotoxic T lymphocytes (CTLs) that cause type 1 diabetes are activated in draining lymph nodes and become concentrated as fully active CTLs in inflamed pancreatic islets. It is unclear whether CTL function is driven by signals received in the lymph node or also in the inflamed tissue. We studied whether the development of cytotoxicity requires further activation in islets. Autoreactive CTLs found in the islets of diabetes-prone NOD mice had acquired much higher expression of the cytotoxic effector markers granzyme B, interferon γ, and CD107a than had those in the pancreatic lymph node (PLN). Increased expression seemed to result from stimulation in the islet itself. T cells held up from migrating from the PLN by administration of the sphingosine-1-phosphate agonist FTY720 did not increase expression of cytotoxic molecules in the PLN. Stimulation did not require antigen presentation or cytokine secretion by the target ß cells because it was not affected by the absence of class I major histocompatibility complex expression or by the overexpression of suppressor of cytokine signaling-1. Activation of CD40-expressing cells stimulated increased CTL function and ß-cell destruction, suggesting that signals derived from CD40-expressing cells promote the acquisition of cytotoxicity in the islet environment. These data provide in vivo evidence that stimulation of cytotoxic effector molecule expression occurs in inflamed islets and is independent of ß cells.


Assuntos
Apresentação Cruzada/imunologia , Citotoxicidade Imunológica , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Linfonodos/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno/imunologia , Biomarcadores/metabolismo , Proliferação de Células , Citocinas/biossíntese , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/imunologia , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos NOD , Ratos , Linfócitos T Citotóxicos/patologia
11.
Apoptosis ; 16(8): 822-30, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21644000

RESUMO

Type 1 diabetes is caused by death of insulin-producing pancreatic beta cells. Beta-cell apoptosis induced by FasL may be important in type 1 diabetes in humans and in the non-obese diabetic (NOD) mouse model. Deficiency of the pro-apoptotic BH3-only molecule Bid protects beta cells from FasL-induced apoptosis in vitro. We aimed to test the requirement for Bid, and the significance of Bid-dependent FasL-induced beta-cell apoptosis in type 1 diabetes. We backcrossed Bid-deficient mice, produced by homologous recombination and thus without transgene overexpression, onto a NOD genetic background. Genome-wide single nucleotide polymorphism analysis demonstrated that diabetes-related genetic regions were NOD genotype. Transferred beta cell antigen-specific CD8+ T cells proliferated normally in the pancreatic lymph nodes of Bid-deficient mice. Moreover, Bid-deficient NOD mice developed type 1 diabetes and insulitis similarly to wild-type NOD mice. Our data indicate that beta-cell apoptosis in type 1 diabetes can proceed without Fas-induced killing mediated by the BH3-only protein Bid.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/imunologia , Animais , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/deficiência , Antígenos CD4/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Proliferação de Células , Células Cultivadas , Fragmentação do DNA , Diabetes Mellitus Tipo 1/imunologia , Proteína Ligante Fas/farmacologia , Proteína Ligante Fas/fisiologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Sistema Imunitário/citologia , Imunofenotipagem , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interferon gama/farmacologia , Interferon gama/fisiologia , Interleucina-1beta/farmacologia , Interleucina-1beta/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/fisiologia , Receptor fas/metabolismo
12.
Immunol Cell Biol ; 87(6): 473-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19381159

RESUMO

SOCS1 profoundly influences the development and peripheral homeostasis of CD8+ T cells but has less impact on CD4+ T cells. Despite the moderate influence of SOCS1 in the development of the total CD4 T-cell lineage, we show here that SOCS1 deficiency resulted in a 10-fold increase in Foxp3(+) CD4(+) T cells in the thymus. Increased numbers of Foxp3+ thymocytes occurred in mice with T-cell-specific ablation of SOCS1, suggesting that the effect is T-cell intrinsic. This increase in Foxp3+ CD4+cells in SOCS1-deficient mice also occurred in the absence of IFN-gamma or/and IL-7 signaling. Increase in CD25+CD4+ T cells in the absence of SOCS1 could be partly due to enhanced survival by CD25+CD4+cells, to a lesser degree CD25-CD4+ T cells, from SOCS1-deficient mice with or without T-cell growth factors.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Fatores de Transcrição Forkhead/biossíntese , Interferon gama/genética , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Interleucina-7/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Timo/citologia , Timo/crescimento & desenvolvimento
13.
J Virol ; 82(13): 6139-49, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18417562

RESUMO

Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet beta cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged > or = 12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8(+) T-cell proportions in islets. Levels of beta-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after beta-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of beta cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Ilhotas Pancreáticas/imunologia , Infecções por Rotavirus/complicações , Fatores Etários , Análise de Variância , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Citometria de Fluxo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
14.
Sci Rep ; 9(1): 15302, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653894

RESUMO

In type 1 diabetes, maturation of activated autoreactive CD8+ T cells to fully armed effector cytotoxic T lymphocytes (CTL) occurs within the islet. At present the signals required for the maturation process are poorly defined. Cytokines could potentially provide the necessary "third signal" required to generate fully mature CTL capable of killing insulin-producing ß-cells. To determine whether autoreactive CTL within islets respond to cytokines we generated non-obese diabetic (NOD) mice with a reporter for cytokine signalling. These mice express a reporter gene, hCD4, under the control of the endogenous regulatory elements for suppressor of cytokine signalling (SOCS)1, which is itself regulated by pro-inflammatory cytokines. In NOD mice, the hCD4 reporter was expressed in infiltrated islets and the expression level was positively correlated with the frequency of infiltrating CD45+ cells. SOCS1 reporter expression was induced in transferred ß-cell-specific CD8+ 8.3T cells upon migration from pancreatic draining lymph nodes into islets. To determine which cytokines induced SOCS1 promoter activity in islets, we examined hCD4 reporter expression and CTL maturation in the absence of the cytokine receptors IFNAR1 or IL-21R. We show that IFNAR1 deficiency does not confer protection from diabetes in 8.3 TCR transgenic mice, nor is IFNAR1 signalling required for SOCS1 reporter upregulation or CTL maturation in islets. In contrast, IL-21R-deficient 8.3 mice have reduced diabetes incidence and reduced SOCS1 reporter activity in islet CTLs. However IL-21R deficiency did not affect islet CD8+ T cell proliferation or expression of granzyme B or IFNγ. Together these data indicate that autoreactive CD8+ T cells respond to IL-21 and not type I IFNs in the islets of NOD mice, but neither IFNAR1 nor IL-21R are required for islet intrinsic CTL maturation.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Interleucinas/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Linfócitos T Citotóxicos/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos , Proteína 1 Supressora da Sinalização de Citocina/genética , Linfócitos T Citotóxicos/imunologia
15.
Nat Commun ; 8: 14809, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401883

RESUMO

T-cell responses are initiated upon cognate presentation by professional antigen presenting cells in lymphoid tissue. T cells then migrate to inflamed tissues, but further T-cell stimulation in these parenchymal target sites is not well understood. Here we show that T-cell expansion within inflamed tissues is a distinct phase that is neither a classical primary nor classical secondary response. This response, which we term 'the mezzanine response', commences within days after initial antigen encounter, unlike the secondary response that usually occurs weeks after priming. A further distinction of this response is that T-cell proliferation is driven by parenchymal cell antigen presentation, without requiring professional antigen presenting cells, but with increased dependence on IL-2. The mezzanine response might, therefore, be a new target for inhibiting T-cell responses in allograft rejection and autoimmunity or for enhancing T-cell responses in the context of microbial or tumour immunity.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/citologia , Proliferação de Células , Ovalbumina/imunologia , Tecido Parenquimatoso/citologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Inflamação/imunologia , Interleucina-2/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/imunologia , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Tecido Parenquimatoso/imunologia
16.
Diabetes ; 66(6): 1650-1660, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28292965

RESUMO

Recent advances in immunotherapeutics have not yet changed the routine management of autoimmune type 1 diabetes. There is an opportunity to repurpose therapeutics used to treat other diseases to treat type 1 diabetes, especially when there is evidence for overlapping mechanisms. Janus kinase (JAK) 1/JAK2 inhibitors are in development or clinical use for indications including rheumatoid arthritis. There is good evidence for activation of the JAK1/JAK2 and signal transducer and activator of transcription (STAT) 1 pathway in human type 1 diabetes and in mouse models, especially in ß-cells. We tested the hypothesis that using these drugs to block the JAK-STAT pathway would prevent autoimmune diabetes. The JAK1/JAK2 inhibitor AZD1480 blocked the effect of cytokines on mouse and human ß-cells by inhibiting MHC class I upregulation. This prevented the direct interaction between CD8+ T cells and ß-cells, and reduced immune cell infiltration into islets. NOD mice treated with AZD1480 were protected from autoimmune diabetes, and diabetes was reversed in newly diagnosed NOD mice. This provides mechanistic groundwork for repurposing clinically approved JAK1/JAK2 inhibitors for type 1 diabetes.


Assuntos
Glicemia/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Diabetes Mellitus Tipo 1/imunologia , Antígenos de Histocompatibilidade Classe II/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/imunologia , Citocinas/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos NOD , Regulação para Cima
17.
Diabetes ; 66(12): 3041-3050, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28733313

RESUMO

Granzyme A is a protease implicated in the degradation of intracellular DNA. Nucleotide complexes are known triggers of systemic autoimmunity, but a role in organ-specific autoimmune disease has not been demonstrated. To investigate whether such a mechanism could be an endogenous trigger for autoimmunity, we examined the impact of granzyme A deficiency in the NOD mouse model of autoimmune diabetes. Granzyme A deficiency resulted in an increased incidence in diabetes associated with accumulation of ssDNA in immune cells and induction of an interferon response in pancreatic islets. Central tolerance to proinsulin in transgenic NOD mice was broken on a granzyme A-deficient background. We have identified a novel endogenous trigger for autoimmune diabetes and an in vivo role for granzyme A in maintaining immune tolerance.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Granzimas/fisiologia , Tolerância Imunológica , Interferon Tipo I/fisiologia , Animais , DNA de Cadeia Simples/metabolismo , Feminino , Granzimas/deficiência , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
18.
Sci Rep ; 6: 29697, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27405244

RESUMO

Rotavirus infection is associated with childhood progression to type 1 diabetes. Infection by monkey rotavirus RRV accelerates diabetes onset in non-obese diabetic (NOD) mice, which relates to regional lymph node infection and a T helper 1-specific immune response. When stimulated ex vivo with RRV, plasmacytoid dendritic cells (pDCs) from naïve NOD mice secrete type I interferon, which induces the activation of bystander lymphocytes, including islet-autoreactive T cells. This is our proposed mechanism for diabetes acceleration by rotaviruses. Here we demonstrate bystander lymphocyte activation in RRV-infected NOD mice, which showed pDC activation and strong upregulation of interferon-dependent gene expression, particularly within lymph nodes. The requirement for type I interferon signalling was analysed using NOD mice lacking a functional type I interferon receptor (NOD.IFNAR1(-/-) mice). Compared with NOD mice, NOD.IFNAR1(-/-) mice showed 8-fold higher RRV titers in lymph nodes and 3-fold higher titers of total RRV antibody in serum. However, RRV-infected NOD.IFNAR1(-/-) mice exhibited delayed pDC and lymphocyte activation, no T helper 1 bias in RRV-specific antibodies and unaltered diabetes onset when compared with uninfected controls. Thus, the type I interferon signalling induced by RRV infection is required for bystander lymphocyte activation and accelerated type 1 diabetes onset in genetically susceptible mice.


Assuntos
Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Interferon Tipo I/imunologia , Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Transdução de Sinais/imunologia , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/virologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/virologia , Interferon Tipo I/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Infecções por Rotavirus/genética , Infecções por Rotavirus/patologia , Transdução de Sinais/genética , Células Th1/imunologia , Células Th1/patologia
19.
JCI Insight ; 1(10): e86065, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27699217

RESUMO

High-affinity self-reactive thymocytes are purged in the thymus, and residual self-reactive T cells, which are detectable in healthy subjects, are controlled by peripheral tolerance mechanisms. Breakdown in these mechanisms results in autoimmune disease, but antigen-specific therapy to augment natural mechanisms can prevent this. We aimed to determine when antigen-specific therapy is most effective. Islet autoantigens, proinsulin (PI), and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) were expressed in the antigen-presenting cells (APCs) of autoimmune diabetes-prone nonobese diabetic (NOD) mice in a temporally controlled manner. PI expression from gestation until weaning was sufficient to completely protect NOD mice from diabetes, insulitis, and development of insulin autoantibodies. Insulin-specific T cells were significantly diminished, were naive, and did not express IFN-γ when challenged. This long-lasting effect from a brief period of treatment suggests that autoreactive T cells are not produced subsequently. We tracked IGRP206-214-specific CD8+ T cells in NOD mice expressing IGRP in APCs. When IGRP was expressed only until weaning, IGRP206-214-specific CD8+ T cells were not detected later in life. Thus, anti-islet autoimmunity is determined during early life, and autoreactive T cells are not generated in later life. Bolstering tolerance to islet antigens in the perinatal period is sufficient to impart lasting protection from diabetes.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/prevenção & controle , Proinsulina/uso terapêutico , Animais , Células Apresentadoras de Antígenos/citologia , Autoantígenos , Linfócitos T CD8-Positivos/citologia , Glucose-6-Fosfatase/metabolismo , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos
20.
Chem Biol ; 22(6): 705-11, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091167

RESUMO

The AMP-activated protein kinase (AMPK) is a metabolic stress-sensing αßγ heterotrimer responsible for energy homeostasis. Pharmacological inhibition of AMPK is regarded as a therapeutic strategy in some disease settings including obesity and cancer; however, the broadly used direct AMPK inhibitor compound C suffers from poor selectivity. We have discovered a dihydroxyquinoline drug (MT47-100) with novel AMPK regulatory properties, being simultaneously a direct activator and inhibitor of AMPK complexes containing the ß1 or ß2 isoform, respectively. Allosteric inhibition by MT47-100 was dependent on the ß2 carbohydrate-binding module (CBM) and determined by three non-conserved CBM residues (Ile81, Phe91, Ile92), but was independent of ß2-Ser108 phosphorylation. Whereas MT47-100 regulation of total cellular AMPK activity was determined by ß1/ß2 expression ratio, MT47-100 augmented glucose-stimulated insulin secretion from isolated mouse pancreatic islets via a ß2-dependent mechanism. Our findings highlight the therapeutic potential of isoform-specific AMPK allosteric inhibitors.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hidroxiquinolinas/química , Insulina/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Regulação Alostérica , Animais , Sítios de Ligação , Glucose/farmacologia , Humanos , Hidroxiquinolinas/metabolismo , Hidroxiquinolinas/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa