Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Sport Nutr Exerc Metab ; 29(6): 664-670, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592623

RESUMO

PURPOSE: To determine the acute effects of carbohydrate (CHO) ingestion following a bout of maximal eccentric resistance exercise on key anabolic kinases of mammalian target of rapamycin and extracellular signal-regulated kinase (ERK) pathways. The authors' hypothesis was that the activation of anabolic signaling pathways known to be upregulated by resistance exercise would be further stimulated by the physiological hyperinsulinemia resulting from CHO supplementation. METHODS: Ten resistance-trained men were randomized in a crossover, double-blind, placebo (PLA)-controlled manner to ingest either a noncaloric PLA or 3 g/kg of CHO beverage throughout recovery from resistance exercise. Muscle biopsies were collected at rest, immediately after a single bout of intense lower body resistance exercise, and after 3 hr of recovery. RESULTS: CHO ingestion elevated plasma glucose and insulin concentrations throughout recovery compared with PLA ingestion. The ERK pathway (phosphorylation of ERK1/2 [Thr202/Tyr204], RSK [Ser380], and p70S6K [Thr421/Ser424]) was markedly activated immediately after resistance exercise, without any effect of CHO supplementation. The phosphorylation state of AKT (Thr308) was unchanged postexercise in the PLA trial and increased at 3 hr of recovery above resting with ingestion of CHO compared with PLA. Despite stimulating-marked phosphorylation of AKT, CHO ingestion did not enhance resistance exercise-induced phosphorylation of p70S6K (Thr389) and rpS6 (Ser235/236 and Ser240/244). CONCLUSION: CHO supplementation after resistance exercise and hyperinsulinemia does not influence the ERK pathway nor the mTORC1 target p70S6K and its downstream proteins, despite the increased AKT phosphorylation.


Assuntos
Carboidratos da Dieta/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Treinamento Resistido , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Humanos , Insulina/sangue , Masculino , Adulto Jovem
2.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R667-73, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22189669

RESUMO

Intense resistance exercise causes a significant inflammatory response. NF-κB has been identified as a prospective key transcription factor mediating the postexercise inflammatory response. The purpose of this study was to determine whether a single bout of intense resistance exercise regulates NF-κB signaling in human skeletal muscle. Muscle biopsy samples were obtained from the vastus lateralis of five recreationally active, but not strength-trained, males (21.9 ± 1.3 yr) prior to, and at 2 and 4 h following, a single bout of intense resistance exercise. A further five subjects (4 males, 1 female) (23 ± 0.89 yr) were recruited as a nonexercise control group to examine the effect of the muscle biopsy protocol on key markers of skeletal muscle inflammation. Protein levels of IκBα and phosphorylated NF-κB (p65), as well as the mRNA expression of inflammatory myokines monocyte chemoattractant protein 1 (MCP-1), IL-6, and IL-8 were measured. Additionally, NF-κB (p65) DNA binding to the promoter regions of MCP-1, IL-6, and IL-8 was investigated. IκBα protein levels decreased, while p-NF-κB (p65) protein levels increased 2 h postexercise and returned to near-baseline levels by 4-h postexercise. Immunohistochemical data verified these findings, illustrating an increase in p-NF-κB (p65) protein levels, and nuclear localization at 2 h postexercise. Furthermore, NF-κB DNA binding to MCP-1, IL-6, and IL-8 promoter regions increased significantly 2 h postexercise as did mRNA levels of these myokines. No significant change was observed in the nonexercise control group. These novel data provide evidence that intense resistance exercise transiently activates NF-κB signaling in human skeletal muscle during the first few hours postexercise. These findings implicate NF-κB in the transcriptional control of myokines known to be central to the postexercise inflammatory response.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Biópsia , Quimiocina CCL2/metabolismo , DNA/metabolismo , Feminino , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Músculo Esquelético/patologia , Inibidor de NF-kappaB alfa , Adulto Jovem
3.
BMC Physiol ; 11: 10, 2011 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-21702994

RESUMO

BACKGROUND: The branched-chain amino acid (BCAA) leucine has been identified to be a key regulator of skeletal muscle anabolism. Activation of anabolic signalling occurs via the mammalian target of rapamycin (mTOR) through an undefined mechanism. System A and L solute carriers transport essential amino acids across plasma membranes; however it remains unknown whether an exogenous supply of leucine regulates their gene expression. The aim of the present study was to investigate the effects of acute and chronic leucine stimulation of anabolic signalling and specific amino acid transporters, using cultured primary human skeletal muscle cells. RESULTS: Human myotubes were treated with leucine, insulin or co-treated with leucine and insulin for 30 min, 3 h or 24 h. Activation of mTOR signalling kinases were examined, together with putative nutrient sensor human vacuolar protein sorting 34 (hVps34) and gene expression of selected amino acid transporters. Phosphorylation of mTOR and p70S6K was transiently increased following leucine exposure, independently to insulin. hVps34 protein expression was also significantly increased. However, genes encoding amino acid transporters were differentially regulated by insulin and not leucine. CONCLUSIONS: mTOR signalling is transiently activated by leucine within human myotubes independently of insulin stimulation. While this occurred in the absence of changes in gene expression of amino acid transporters, protein expression of hVps34 increased.


Assuntos
Sistemas de Transporte de Aminoácidos/efeitos dos fármacos , Classe III de Fosfatidilinositol 3-Quinases/biossíntese , Insulina/farmacologia , Leucina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Adulto , Sistemas de Transporte de Aminoácidos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Técnicas de Cultura de Órgãos , Fosforilação , Fator de Iniciação 3 em Procariotos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/biossíntese , Adulto Jovem
4.
Clin Nutr ; 40(3): 1355-1366, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32928582

RESUMO

BACKGROUND: Excessive adipose tissue is central to disease burden posed by the Metabolic Syndrome (MetS). Whilst much is known of the altered transcriptomic regulation of adipose tissue under fasting conditions, little is known of the responses to high-fat meals. METHODS: Nineteen middle-aged males (mean ± SD 52.0 ± 4.6 years), consumed two isocaloric high-fat, predominately dairy-based or soy-based, breakfast meals. Abdominal subcutaneous adipose biopsies were collected after overnight fast (0 h) and 4 h following each meal. Global gene expression profiling was performed by microarray (Illumina Human WG-6 v3). RESULTS: In the fasted state, 13 genes were differently expressed between control and MetS adipose tissue (≥1.2 fold-difference, p < 0.05). In response to the meals, the control participants had widespread increases in genes related to cellular nutrient responses (≥1.2 fold-change, p < 0.05; 2444 & 2367 genes; dairy & soy, respectively). There was blunted response in the MetS group (≥1.2 fold-change, p < 0.05; 332 & 336 genes; dairy & soy, respectively). CONCLUSIONS: In middle-aged males with MetS, a widespread suppression of the subcutaneous adipose tissue nutrient responsive gene expression suggests an inflexibility in the transcriptomic responsiveness to both high-fat meals.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Síndrome Metabólica/metabolismo , Período Pós-Prandial/fisiologia , Adulto , Austrália , Glicemia/análise , Índice de Massa Corporal , Humanos , Insulina/sangue , Masculino , Refeições , Pessoa de Meia-Idade , Transdução de Sinais/genética , Triglicerídeos/sangue
5.
Nutr Metab (Lond) ; 11(1): 46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302072

RESUMO

BACKGROUND: The mammalian target of rapamycin (mTOR) pathway is the primary regulator of muscle protein synthesis. Metabolic syndrome (MetS) is characterized by central obesity and insulin resistance; little is known about how MetS affects the sensitivity of the mTOR pathway to feeding. METHODS: The responsiveness of mTOR pathway targets such as p706Sk to a high protein meal containing either dairy or soy foods was investigated in healthy insulin sensitive middle-aged men and those presenting with metabolic syndrome (MetS). Twenty male subjects (10 healthy controls, 10 MetS) participated in a single-blinded randomized cross-over study. In a random sequence, subjects ingested energy-matched breakfasts composed predominately of either dairy-protein or soy-protein foods. Skeletal muscle biopsies were collected in the fasted state and at 2 and 4 h post-meal ingestion for the analysis of mTOR- and insulin-signalling kinase activation. RESULTS: Phosphorylated Akt and Insulin receptor substrate 1 (IRS1) increased during the postabsorptive period with no difference between groups. mTOR (Ser448) and ribosomal protein S6 phosphorylation increased 2 h following dairy meal consumption only. p70S6K (Thr389) phosphorylation was increased after feeding only in the control subjects and not in the MetS group. CONCLUSIONS: These data demonstrate that the consumption of a dairy-protein rich but not a soy-protein rich breakfast activates the phosphorylation of mTOR and ribosomal protein S6, required for protein synthesis in human skeletal muscle. Unlike healthy controls, subjects with MetS did not increase muscle p70S6K(Thr389) phosphorylation in response to a mixed meal. TRIAL REGISTRATION: This trial was registered with the Australian New Zealand Clinical Trials Registry (ANZCTR) as ACTRN12610000562077.

6.
Lipids ; 48(1): 39-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124915

RESUMO

Using lipidomic methodologies the impact that meal lipid composition and metabolic syndrome (MetS) exerts on the postprandial chylomicron triacylglycerol (TAG) response was examined. Males (9 control; 11 MetS) participated in a randomised crossover trial ingesting two high fat breakfast meals composed of either dairy-based foods or vegetable oil-based foods. The postprandial lipidomic molecular composition of the TAG in the chylomicron-rich (CM) fraction was analysed with tandem mass spectrometry coupled with liquid chromatography to profile CM TAG species and targeted TAG regioisomers. Postprandial CM TAG concentrations were significantly lower after the dairy-based foods compared with the vegetable oil-based foods for both control and MetS subjects. The CM TAG response to the ingested meals involved both significant and differential depletion of TAG species containing shorter- and medium-chain fatty acids (FA) and enrichment of TAG molecular species containing C16 and C18 saturated, monounsaturated and diunsaturated FA. Furthermore, there were significant changes in the TAG species between the food TAG and CM TAG and between the 3- and 5-h postprandial samples for the CM TAG regioisomers. Unexpectedly, the postprandial CM TAG concentration and CM TAG lipidomic responses did not differ between the control and MetS subjects. Lipidomic analysing of CM TAG molecular species revealed dynamic changes in the molecular species of CM TAG during the postprandial phase suggesting either preferential CM TAG species formation and/or clearance.


Assuntos
Quilomícrons/metabolismo , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Síndrome Metabólica/metabolismo , Triglicerídeos/metabolismo , Adulto , Quilomícrons/sangue , Quilomícrons/química , Laticínios , Dieta Hiperlipídica/métodos , Gorduras na Dieta/análise , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Humanos , Masculino , Refeições , Síndrome Metabólica/sangue , Pessoa de Meia-Idade , Óleos de Plantas/metabolismo , Período Pós-Prandial , Triglicerídeos/análise , Triglicerídeos/sangue
7.
Nutrients ; 1(2): 263-75, 2009 02.
Artigo em Inglês | MEDLINE | ID: mdl-22253983

RESUMO

The effect of resistance exercise with the ingestion of supplementary protein on the activation of the mTOR cascade, in human skeletal muscle has not been fully elucidated. In this study, the impact of a single bout of resistance exercise, immediately followed by a single dose of whey protein isolate (WPI) or placebo supplement, on the activation of mTOR signalling was analyzed. Young untrained men completed a maximal single-legged knee extension exercise bout and were randomized to ingest either WPI supplement (n = 7) or the placebo (n = 7). Muscle biopsies were taken from the vastus lateralis before, and 2, 4 and 24 h post-exercise. WPI or placebo ingestion consumed immediately post-exercise had no impact on the phosphorylation of Akt (Ser473). However, WPI significantly enhanced phosphorylation of mTOR (Ser2448), 4E-BP1 (Thr(37/46)) and p70(S6K) (Thr389) at 2 h post-exercise. This study demonstrates that a single dose of WPI, when consumed in modest quantities, taken immediately after resistance exercise elicits an acute and transient activation of translation initiation within the exercised skeletal muscle.


Assuntos
Exercício Físico/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas do Leite/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Adolescente , Adulto , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Masculino , Proteínas do Leite/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/genética , Fatores de Tempo , Proteínas do Soro do Leite , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa