Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 149(2): 307-21, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500798

RESUMO

Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , MAP Quinase Quinase 1/antagonistas & inibidores , Proteínas Quinases/genética , Proteoma/análise , Animais , Antineoplásicos/uso terapêutico , Benzenossulfonatos/uso terapêutico , Benzimidazóis/uso terapêutico , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Niacinamida/análogos & derivados , Compostos de Fenilureia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/uso terapêutico , Receptores Proteína Tirosina Quinases/genética , Sorafenibe
2.
Cell Rep ; 11(3): 390-404, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25865888

RESUMO

Therapeutics that target ERBB2, such as lapatinib, often provide initial clinical benefit, but resistance frequently develops. Adaptive responses leading to lapatinib resistance involve reprogramming of the kinome through reactivation of ERBB2/ERBB3 signaling and transcriptional upregulation and activation of multiple tyrosine kinases. The heterogeneity of induced kinases prevents their targeting by a single kinase inhibitor, underscoring the challenge of predicting effective kinase inhibitor combination therapies. We hypothesized that, to make the tumor response to single kinase inhibitors durable, the adaptive kinome response itself must be inhibited. Genetic and chemical inhibition of BET bromodomain chromatin readers suppresses transcription of many lapatinib-induced kinases involved in resistance, including ERBB3, IGF1R, DDR1, MET, and FGFRs, preventing downstream SRC/FAK signaling and AKT reactivation. Combining inhibitors of kinases and chromatin readers prevents kinome adaptation by blocking transcription, generating a durable response to lapatinib, and overcoming the dilemma of heterogeneity in the adaptive response.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2/metabolismo , Transdução de Sinais/fisiologia , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , Lapatinib , Espectrometria de Massas , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Mol Cell Biol ; 33(11): 2260-74, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23530058

RESUMO

MEK1/2 inhibitors such as AZD6244 are in clinical trials for the treatment of multiple cancers, including breast cancer. Targeted kinase inhibition can induce compensatory kinome changes, rendering single therapeutic agents ineffective. To identify target proteins to be used in a combinatorial approach to inhibit tumor cell growth, we used a novel strategy that identified microRNAs (miRNAs) that synergized with AZD6244 to inhibit the viability of the claudin-low breast cancer cell line MDA-MB-231. Screening of a miRNA mimic library revealed the ability of miR-9-3p to significantly enhance AZD6244-induced extracellular signal-regulated kinase inhibition and growth arrest, while miR-9-3p had little effect on growth alone. Promoter methylation of mir-9 genes correlated with low expression of miR-9-3p in different breast cancer cell lines. Consistent with miR-9-3p having synthetic enhancer tumor suppressor characteristics, miR-9-3p expression in combination with MEK inhibitor caused a sustained loss of c-MYC expression and growth inhibition. The ß1 integrin gene (ITGB1) was identified as a new miR-9-3p target, and the growth inhibition seen with small interfering RNA knockdown or antibody blocking of ITGB1 in combination with MEK inhibitor phenocopied the growth inhibition seen with miR-9-3p plus AZD6244. The miRNA screen led to identification of a druggable protein, ITGB1, whose functional inhibition synergizes with MEK inhibitor.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Claudinas/metabolismo , Inibidores Enzimáticos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MicroRNAs/genética , Regiões 3' não Traduzidas , Benzimidazóis/farmacologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes myc , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia
4.
Cell Stem Cell ; 8(5): 525-37, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21549327

RESUMO

Epithelial stem cells self-renew while maintaining multipotency, but the dependence of stem cell properties on maintenance of the epithelial phenotype is unclear. We previously showed that trophoblast stem (TS) cells lacking the protein kinase MAP3K4 maintain properties of both stemness and epithelial-mesenchymal transition (EMT). Here, we show that MAP3K4 controls the activity of the histone acetyltransferase CBP, and that acetylation of histones H2A and H2B by CBP is required to maintain the epithelial phenotype. Combined loss of MAP3K4/CBP activity represses expression of epithelial genes and causes TS cells to undergo EMT while maintaining their self-renewal and multipotency properties. The expression profile of MAP3K4-deficient TS cells defines an H2B acetylation-regulated gene signature that closely overlaps with that of human breast cancer cells. Taken together, our data define an epigenetic switch that maintains the epithelial phenotype in TS cells and reveals previously unrecognized genes potentially contributing to breast cancer.


Assuntos
Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal , Histonas/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Multipotentes/metabolismo , Fosfoproteínas/metabolismo , Acetilação , Animais , Linhagem Celular , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Células-Tronco Embrionárias/patologia , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , MAP Quinase Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 4/metabolismo , Camundongos , Células-Tronco Multipotentes/patologia , Mutação/genética , Trofoblastos/patologia
5.
Mol Cell Biol ; 29(10): 2748-61, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19289495

RESUMO

Trophoblast differentiation during placentation involves an epithelial-mesenchymal transition (EMT) with loss of E-cadherin and gain of trophoblast invasiveness. Mice harboring a point mutation that renders inactive the mitogen-activated protein kinase kinase kinase MEKK4 exhibit dysregulated placental development with increased trophoblast invasion. Isolated MEKK4 kinase-inactive trophoblast stem (TS) cells cultured under undifferentiating, self-renewing conditions in the presence of fibroblast growth factor 4 (FGF4) display increased expression of Slug, Twist, and matrix metalloproteinase 2 (MMP2), loss of E-cadherin, and hyperinvasion of extracellular matrix, each a hallmark of EMT. MEKK4 kinase-inactive TS cells show a preferential differentiation to Tpbp alpha- and Gcm1-positive trophoblasts, which are indicative of spongiotrophoblast and syncytiotrophoblast differentiation, respectively. FGF4-stimulated Jun N-terminal kinase (JNK) and p38 activity is markedly reduced in MEKK4 kinase-inactive TS cells. Chemical inhibition of JNK in wild-type TS cells induced a similar EMT response as loss of MEKK4 kinase activity, including inhibition of E-cadherin expression and increased expression of Slug, MMP2, Tpbp alpha, and Gcm1. Chromatin immunoprecipitation analyses revealed changes in AP-1 composition with increased Fra-2 and decreased Fra-1 and JunB binding to the regulatory regions of Gcm1 and MMP2 genes in MEKK4 kinase-inactive TS cells. Our results define MEKK4 as a signaling hub for FGF4 activation of JNK that is required for maintenance of TS cells in an undifferentiated state.


Assuntos
Embrião de Mamíferos , Fator 4 de Crescimento de Fibroblastos/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 4/metabolismo , Células-Tronco/fisiologia , Trofoblastos/citologia , Ativinas/genética , Ativinas/metabolismo , Animais , Caderinas/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Ativação Enzimática , Matriz Extracelular , Feminino , Fator 4 de Crescimento de Fibroblastos/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase Quinase 4/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Placenta/citologia , Gravidez , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail , Células-Tronco/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Trofoblastos/fisiologia , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
J Biol Chem ; 282(42): 30476-84, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17726008

RESUMO

The MAPK kinase kinase MEKK4 is required for neurulation and skeletal patterning during mouse development. MEKK4 phosphorylates and activates MKK4/MKK7 and MKK3/MKK6 leading to the activation of JNK and p38, respectively. MEKK4 is believed to be auto-inhibited, and its interaction with other proteins controls its dimerization and activation. TRAF4, GADD45, and Axin each bind and activate MEKK4, with TRAF4 and Axin binding to the kinase domain and GADD45 binding within the N-terminal regulatory domain. Here we show that similar to the interaction with TRAF4 and Axin, the kinase domain of MEKK4 interacts with the multifunctional serine/threonine kinase GSK3beta. GSK3beta binding to MEKK4 blocks MEKK4 dimerization that is required for MEKK4 activation, effectively inhibiting MEKK4 stimulation of the JNK and p38 MAPK pathways. Inhibition of GSK3beta kinase activity with SB216763 results in enhanced MEKK4 kinase activity and increased JNK and p38 activation, indicating that an active state of GSK3beta is required for binding and inhibition of MEKK4 dimerization. Furthermore, GSK3beta phosphorylates specific serines and threonines in the N terminus of MEKK4. Together, these findings demonstrate that GSK3beta binds to the kinase domain of MEKK4 and regulates MEKK4 dimerization. However, unlike TRAF4, Axin, and GADD45, GSK3beta inhibits MEKK4 activity and prevents its activation of JNK and p38. Thus, control of MEKK4 dimerization is regulated both positively and negatively by its interaction with specific proteins.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Proteína Axina , Células COS , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , Dimerização , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Indóis/farmacologia , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 6/metabolismo , MAP Quinase Quinase 7/metabolismo , MAP Quinase Quinase Quinase 4/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Maleimidas/farmacologia , Camundongos , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas Repressoras/metabolismo , Fator 4 Associado a Receptor de TNF/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
7.
Biochemistry ; 44(5): 1635-42, 2005 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-15683247

RESUMO

The metabolism of long-chain fatty acids in brain and their incorporation into signaling molecules such as diacylglycerol and LPA and into structural components of membranes, including myelin, requires activation by long-chain acyl-CoA synthetase (ACSL). Because ACSL3 and ACSL6 are the predominant ACSL isoforms in brain, we cloned and characterized these isoforms from rat brain and identified a novel ACSL6 clone (ACSL6_v2). ACSL6_v2 and the previously reported ACSL6_v1 represent splice variants that include exon 13 or 14, respectively. Homologue sequences of both of these variants are present in the human and mouse databases. ACSL3, ACSL6_v1, and ACSL6_v2 with Flag-epitopes at the C-termini were expressed in Escherichia coli and purified on Flag-affinity columns. The three recombinant proteins were characterized. Compared to ACSL4, another brain isoform, ACSL3, ACSL6_v1, and ACSL6_v2 showed similarities in kinetic values for CoA, palmitate, and arachidonate, but their apparent Km values for oleate were 4- to 6-fold lower than for ACSL4. In a direct competition assay with palmitate, all the polyunsaturated fatty acids tested were strong competitors only for ACSL4 with IC50 values of 0.5 to 5 microM. DHA was also strongly preferred by ACSL6_v2. The apparent Km value for ATP of ACSL6_v1 was 8-fold higher than that of ACSL6_v2. ACSL3 and the two variants of ACSL6 were more resistant than ACSL4 to heat inactivation. Despite the high amino acid identity between ACSL3 and ACSL4, rosiglitazone inhibited only ACSL4. Triacsin C, an inhibitor of ACSL1 and ACSL4, also inhibited ACSL3, but did not inhibit the ACSL6 variants. These data further document important differences in the closely related ACSL isoforms and show that amino acid changes near the consensus nucleotide binding site alter function in the two splice variants of ACSL6.


Assuntos
Coenzima A Ligases/química , Proteínas Recombinantes/química , Processamento Alternativo , Sequência de Aminoácidos , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/genética , Inibidores Enzimáticos/química , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Temperatura Alta , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Cinética , Dados de Sequência Molecular , Octoxinol/química , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Rosiglitazona , Tiazolidinedionas/química , Triazenos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa