Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hered ; 111(7): 593-605, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33252684

RESUMO

The extent that Pleistocene climate variability promoted speciation has been much debated. Here, we surveyed genetic markers in winged kelp Alaria in the Gulf of Alaska, Northeast Pacific Ocean to understand how paleoclimates may have influenced diversity in this kelp. The study included wide geographic sampling over 2800 km and large sample sizes compared to previous studies of this kelp. Mitochondrial 5'-COI (664 bp), plastid rbcL-3' (740 bp) and 8 microsatellite markers in 16 populations resolved 5 well-defined lineages. COI-rbcL haplotypes were distributed chaotically among populations around the Gulf of Alaska. Principal Coordinates Analysis of microsatellite genotypes grouped plants largely by organellar lineage instead of geography, indicating reproductive isolation among lineages. However, microsatellite markers detected hybrids at 3 sites where lineages co-occurred. Local adaptation on various time scales may be responsible for some genetic differences between populations located along wave-energy and salinity gradients, but the chaotic pattern of variability over hundreds of kilometers is likely due to isolations in northern refugia during Pleistocene ice ages. The range of divergences between populations indicates that episodic glaciations led to the creation of new lineages, but population turnover (local extinctions and recolonizations) limited the formation of new species in the Northeastern Pacific Ocean.


Assuntos
Evolução Biológica , Kelp/classificação , Kelp/genética , Alaska , DNA Mitocondrial , Ecossistema , Genes Mitocondriais , Variação Genética , Haplótipos , Repetições de Microssatélites , Filogenia , Filogeografia
2.
Proc Natl Acad Sci U S A ; 113(29): 7962-9, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27432963

RESUMO

Understanding how geography, oceanography, and climate have ultimately shaped marine biodiversity requires aligning the distributions of genetic diversity across multiple taxa. Here, we examine phylogeographic partitions in the sea against a backdrop of biogeographic provinces defined by taxonomy, endemism, and species composition. The taxonomic identities used to define biogeographic provinces are routinely accompanied by diagnostic genetic differences between sister species, indicating interspecific concordance between biogeography and phylogeography. In cases where individual species are distributed across two or more biogeographic provinces, shifts in genotype frequencies often align with biogeographic boundaries, providing intraspecific concordance between biogeography and phylogeography. Here, we provide examples of comparative phylogeography from (i) tropical seas that host the highest marine biodiversity, (ii) temperate seas with high productivity but volatile coastlines, (iii) migratory marine fauna, and (iv) plankton that are the most abundant eukaryotes on earth. Tropical and temperate zones both show impacts of glacial cycles, the former primarily through changing sea levels, and the latter through coastal habitat disruption. The general concordance between biogeography and phylogeography indicates that the population-level genetic divergences observed between provinces are a starting point for macroevolutionary divergences between species. However, isolation between provinces does not account for all marine biodiversity; the remainder arises through alternative pathways, such as ecological speciation and parapatric (semiisolated) divergences within provinces and biodiversity hotspots.


Assuntos
Filogeografia , Animais , Organismos Aquáticos/classificação , Oceanos e Mares
3.
Mol Ecol ; 24(19): 5020-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26334439

RESUMO

A major goal of phylogeographic analysis using molecular markers is to understand the ecological and historical variables that influence genetic diversity within a species. Here, we used sequences of the mitochondrial Cox1 gene and nuclear internal transcribed spacer to reconstruct its phylogeography and demographic history of the intertidal red seaweed Chondrus ocellatus over most of its geographical range in the Northwest Pacific. We found three deeply separated lineages A, B and C, which diverged from one another in the early Pliocene-late Miocene (c. 4.5-7.7 Ma). The remarkably deep divergences, both within and between lineages, appear to have resulted from ancient isolations, accelerated by random drift and limited genetic exchange between regions. The disjunct distributions of lineages A and C along the coasts of Japan may reflect divergence during isolation in scattered refugia. The distribution of lineage B, from the South China Sea to the Korean Peninsula, appears to reflect postglacial recolonizations of coastal habitats. These three lineages do not coincide with the three documented morphological formae in C. ocellatus, suggesting that additional cryptic species may exist in this taxon. Our study illustrates the interaction of environmental variability and demographic processes in producing lineage diversification in an intertidal seaweed and highlights the importance of phylogeographic approaches for discovering cryptic marine biodiversity.


Assuntos
Chondrus/classificação , Variação Genética , Genética Populacional , Evolução Biológica , Chondrus/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Ecossistema , Dados de Sequência Molecular , Noroeste dos Estados Unidos , Filogenia , Filogeografia , Análise de Sequência de DNA
4.
Mol Phylogenet Evol ; 65(1): 203-12, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22750109

RESUMO

A previous analysis of Pacific herring mitochondrial (mt) DNA with Bayesian skyline plots (BSPs) was interpreted to reflect population growth in the late Pleistocene that was preceded by population stability over several hundred thousand years. Here we use an independent set of mtDNA control region (CR) sequences and simulations to test these hypotheses. The CR haplotype genealogy shows three deeply divided lineages, A, B and C, with divergences ranging from d=1.6% to 1.9% and with similar genetic diversities (h=0.95, 0.96, 0.94; Θ(π)=0.011, 0.012, 0.014, respectively). Lineage A occurs almost exclusively in the NW Pacific and Bering Sea, but lineages B and C are co-distributed in the Northeastern Pacific. This distribution points to a historical allopatric separation between A and B-C across the North Pacific during Pleistocene glaciations. The origins of B and C are uncertain. One hypothesis invokes long-term isolation of lineage C in the Sea of Cortez, but the present-day lack of geographical segregation from lineage B argues for lineage sorting to explain the deep divergence between B and C. BSPs depict rapid population growth in each lineage, but the timing of this growth is uncertain, because of questions about an appropriate molecular clock calibration. We simulated historical demographies under a Pleistocene climate model using observed genetic parameters. BSPs for these sequences showed rapid population growth after the Last Glacial Maximum (LGM) 18-20 k years ago and a flat population history during previous climate fluctuations. Population declines during the LGM appear to have erased signals of previous population fluctuations.


Assuntos
Teorema de Bayes , DNA Mitocondrial/genética , Peixes/genética , Animais , Simulação por Computador , Demografia , Peixes/classificação , Modelos Genéticos , Oceano Pacífico , Análise de Sequência de DNA
5.
Mol Ecol ; 19(19): 4339-51, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20819160

RESUMO

Pleistocene ice-ages greatly influenced the historical abundances of Pacific cod, Gadus macrocephalus, in the North Pacific and its marginal seas. We surveyed genetic variation at 11 microsatellite loci and mitochondrial (mt) DNA in samples from twelve locations from the Sea of Japan to Washington State. Both microsatellite (mean H = 0.868) and mtDNA haplotype (mean h = 0.958) diversities were large and did not show any geographical trends. Genetic differentiation between samples was significantly correlated with geographical distance between samples for both microsatellites (FST = 0.028, r(2) = 0.33) and mtDNA (FST = 0.027, r(2) = 0.18). Both marker classes showed a strong genetic discontinuity between northwestern and northeastern Pacific populations that likely represents groups previously isolated during glaciations that are now in secondary contact. Significant differences appeared between samples from the Sea of Japan and Okhotsk Sea that may reflect ice-age isolations in the northwest Pacific. In the northeast Pacific, a microsatellite and mtDNA partition was detected between coastal and Georgia Basin populations. The presence of two major coastal mtDNA lineages on either side of the Pacific Ocean basin implies at least two ice-age refugia and separate postglacial population expansions facilitated by different glacial histories. Northward expansions into the Gulf of Alaska were possible 14-15 kyr ago, but deglaciation and colonization of the Georgia Basin probably occurred somewhat later. Population expansions were evident in mtDNA mismatch distributions and in Bayesian skyline plots of the three major lineages, but the start of expansions appeared to pre-date the last glacial maximum.


Assuntos
Evolução Biológica , Gadiformes/genética , Variação Genética , Genética Populacional , Animais , DNA Mitocondrial/genética , Haplótipos , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Oceano Pacífico , Análise de Sequência de DNA
6.
PLoS One ; 10(6): e0130184, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090990

RESUMO

The average sizes of Pacific salmon have declined in some areas in the Northeast Pacific over the past few decades, but the extent and geographic distribution of these declines in Alaska is uncertain. Here, we used regression analyses to quantify decadal trends in length and age at maturity in ten datasets from commercial harvests, weirs, and spawner abundance surveys of Chinook salmon Oncorhynchus tshawytscha throughout Alaska. We found that on average these fish have become smaller over the past 30 years (~6 generations), because of a decline in the predominant age at maturity and because of a decrease in age-specific length. The proportion of older and larger 4-ocean age fish in the population declined significantly (P < 0.05) in all stocks examined by return year or brood year. Our analyses also indicated that the age-specific lengths of 4-ocean fish (9 of 10 stocks) and of 3-ocean fish (5 of 10 stocks) have declined significantly (P < 0.05). Size-selective harvest may be driving earlier maturation and declines in size, but the evidence is not conclusive, and additional factors, such as ocean conditions or competitive interactions with other species of salmon, may also be responsible. Regardless of the cause, these wide-spread phenotypic shifts influence fecundity and population abundance, and ultimately may put populations and associated fisheries at risk of decline.


Assuntos
Salmão/fisiologia , Distribuição por Idade , Alaska , Migração Animal , Animais , Tamanho Corporal , Feminino , Fertilidade , Pesqueiros , Masculino , Salmão/anatomia & histologia , Comportamento Sexual Animal , Maturidade Sexual
7.
PLoS One ; 8(12): e81916, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349150

RESUMO

The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta) in Prince William Sound (PWS), Alaska, with 135 single nucleotide polymorphism (SNP) markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960's for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964-1982) with frequencies in contemporary samples (2008-2010) and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.


Assuntos
Quimera/genética , Fluxo Gênico , Oncorhynchus keta/genética , Salmão/genética , Alaska , Animais , Cruzamento , Conservação dos Recursos Naturais , Feminino , Pesqueiros , Variação Genética , Genética Populacional , Genótipo , Masculino , Repetições de Microssatélites , Modelos Genéticos , Oncorhynchus keta/classificação , Fenótipo , Filogenia
8.
PLoS One ; 7(12): e50340, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300525

RESUMO

Pacific herring show an abrupt genetic discontinuity in the central North Pacific that represents secondary contact between refuge populations previously isolated during Pleistocene glaciations. Paradoxically, high levels of gene flow produce genetic homogeneity among ocean-type populations within each group. Here, we surveyed variability in mtDNA control-region sequences (463 bp) and nine microsatellite loci in Pacific herring from sites across the North Pacific to further explore the nature of the genetic discontinuity around the Alaska Peninsula. Consistent with previous studies, little divergence (Φ(ST)  = 0.011) was detected between ocean-type populations of Pacific herring in the North West Pacific, except for a population in the Yellow Sea (Φ(ST)  = 0.065). A moderate reduction in genetic diversity for both mtDNA and microsatellites in the Yellow Sea likely reflects founder effects during the last colonization of this sea. Reciprocal monophyly between divergent mtDNA lineages (Φ(ST)  = 0.391) across the Alaska Peninsula defines the discontinuity across the North Pacific. However, microsatellites did not show a strong break, as eastern Bering Sea (EBS) herring were more closely related to NE Pacific than to NW Pacific herring. This discordance between mtDNA and microsatellites may be due to microsatellite allelic convergence or to sex-biased dispersal across the secondary contact zone. The sharp discontinuity between Pacific herring populations may be maintained by high-density blocking, competitive exclusion or hybrid inferiority.


Assuntos
DNA Mitocondrial/genética , Peixes/genética , Fluxo Gênico , Variação Genética/genética , Genética Populacional , Repetições de Microssatélites/genética , Animais , Geografia , Oceano Pacífico , Filogenia
9.
PLoS One ; 7(7): e42201, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860082

RESUMO

Geographic surveys of allozymes, microsatellites, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) have detected several genetic subdivisions among European anchovy populations. However, these studies have been limited in their power to detect some aspects of population structure by the use of a single or a few molecular markers, or by limited geographic sampling. We use a multi-marker approach, 47 nDNA and 15 mtDNA single nucleotide polymorphisms (SNPs), to analyze 626 European anchovies from the whole range of the species to resolve shallow and deep levels of population structure. Nuclear SNPs define 10 genetic entities within two larger genetically distinctive groups associated with oceanic variables and different life-history traits. MtDNA SNPs define two deep phylogroups that reflect ancient dispersals and colonizations. These markers define two ecological groups. One major group of Iberian-Atlantic populations is associated with upwelling areas on narrow continental shelves and includes populations spawning and overwintering in coastal areas. A second major group includes northern populations in the North East (NE) Atlantic (including the Bay of Biscay) and the Mediterranean and is associated with wide continental shelves with local larval retention currents. This group tends to spawn and overwinter in oceanic areas. These two groups encompass ten populations that differ from previously defined management stocks in the Alboran Sea, Iberian-Atlantic and Bay of Biscay regions. In addition, a new North Sea-English Channel stock is defined. SNPs indicate that some populations in the Bay of Biscay are genetically closer to North Western (NW) Mediterranean populations than to other populations in the NE Atlantic, likely due to colonizations of the Bay of Biscay and NW Mediterranean by migrants from a common ancestral population. Northern NE Atlantic populations were subsequently established by migrants from the Bay of Biscay. Populations along the Iberian-Atlantic coast appear to have been founded by secondary waves of migrants from a southern refuge.


Assuntos
Peixes/classificação , Marcadores Genéticos , Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética
10.
J Hered ; 97(6): 571-80, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17038421

RESUMO

Three major mitochondrial DNA (mtDNA) haplogroups were identified in 5 data sets for North Pacific and Bering Sea walleye pollock. The common haplogroup A showed mirror-image clines on both sides of the North Pacific with high frequencies in southern areas (P(A) > 0.84) and low frequencies in the Bering Sea (P(A) < 0.36). Two additional haplogroups showed complimentary, but weaker, clines in the opposite direction. These clines are unlikely to have arisen by chance during postglacial colonizations of coastal waters in the North Pacific and Bering Sea, and they do not appear to reflect isolation by distance. Contrary to these trends, pollock at the western end of the Aleutian Island Archipelago were genetically more similar to Asian than to North American pollock, a pattern likely reflecting postglacial colonization. Haplogroup F(ST) values for a given haplotype diversity were significantly larger than expected under the island model of migration and random drift, a result implicating natural selection. Frequencies of haplogroup A were highly correlated with sea surface temperature (r > 0.91), whereas frequencies of groups B and C showed negative correlations with temperature. Selection may be operating directly on mtDNA variability or may be mediated through cytonuclear interactions. This biogeographic evidence adds to a growing body of literature indicating that selection may play a greater role in sculpting mtDNA variability than previously thought.


Assuntos
DNA Mitocondrial/química , Gadiformes/genética , Seleção Genética , Adaptação Biológica , Animais , Evolução Molecular , Frequência do Gene , Variação Genética , Geografia , Haplótipos , Oceano Pacífico , Temperatura
11.
Genetica ; 125(2-3): 293-309, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16247701

RESUMO

Genetic architectures of marine fishes are generally shallow because of the large potential for gene flow in the sea. European anchovy, however, are unusual among small pelagic fishes in showing large differences among sub-basins and in harbouring two mtDNA phylogroups ('A' & 'B'), representing 1.1-1.85 million years of separation. Here the mtDNA RFLP dataset of Magoulas et al. [1996, Mol. Biol. Evol. 13: 178-190] is re-examined to assess population models accounting for this subdivided population structure and to evaluate the zoogeographical origins of the two major phylogroups. Haplotype and nucleotide diversities are highest in the Ionian Sea and lowest in the Aegean and Black seas. However, this gradient is absent when 'A' and 'B' haplotypes are examined separately. Neither the self-sustaining nor the basin population models adequately describe anchovy population behaviour. Tests for neutrality, mismatch and nested clade analyses are concordant in depicting recent expansions of both phylogroups. Unimodel mismatch distributions and haplotype coalescences dating to the last (Eemian) interglacial ('B') and the Weichselian pleniglacial period ('A') indicate separate colonizations of the Mediterranean Basin. Phylogroup 'A' is unlikely to have arisen through continuous long-term isolation in the Black Sea because of climate extremes from displaced subpolar weather systems during the ice ages. Ancestors of both groups appear to have colonized the Mediterranean from the Atlantic in the late Pleistocene. Hence, zoogeographic models of anchovy in the Mediterranean must also include the eastern (and possibly southern) Atlantic.


Assuntos
DNA Mitocondrial/genética , Peixes/genética , Animais , Evolução Biológica , Clima , Europa (Continente) , Peixes/classificação , Variação Genética , Genética Populacional , Haplótipos , Biologia Marinha , Região do Mediterrâneo , Modelos Genéticos , Filogenia
12.
Evolution ; 42(1): 138-146, 1988 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28563850

RESUMO

An allozyme investigation of 41 protein-coding loci in two morphologically similar fishes, Atlantic and Pacific cod, indicates that Pacific cod experienced a severe population bottleneck that led to the loss of gene diversity and gene expression. Pacific cod possesses a significantly lesser amount of gene diversity (H = 0.032) than Atlantic cod (H = 0.125) and lacks gene expression for Me-3. Allele-frequency distributions differ between species as predicted by neutral theory: Atlantic cod has a U-shaped distribution, which is expected for populations in drift-mutation equilibrium, whereas Pacific cod has a J-shaped distribution with an excess of low-frequency alleles. This excess may be explained by the appearance of new alleles through mutation which have not yet reached intermediate frequencies through drift. The population bottleneck in Pacific cod was most likely associated with founder populations that dispersed into the Pacific Ocean after the Bering Strait opened. Under the molecular-clock hypothesis a Nei genetic distance of 0.415 (based on 41 loci) suggests that Pacific cod dispersed into the Pacific Ocean soon after the Bering Strait opened in the mid-Pliocene, 3.0 to 3.5 million years ago.

13.
Evolution ; 46(5): 1477-1491, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28569007

RESUMO

Phasianids are considered to be sedentary birds with limited dispersal so that populations may be expected to show genetic isolation by distance. To test this, we examined genetic variability in 618 greywing francolins (Francolinus africanus) at 24 localities over a 1,500 km2 area. We subdivided the samples to measure genetic population structure among localities separated by 6-60 km, and among coveys separated by 0.1-6 km. Thirteen of 30 (43%) allozyme loci were polymorphic, and heterozygosity ranged from 5.3 to 8.5% over 24 localities and averaged 7.0%, a value much larger than that found for other phasianids. Significant allele-frequency heterogeneity was detected among localities and among coveys at several localities for several loci. Mantel's test, however, showed that there was no correlation between geographical distance and the allele-frequency difference between localities for all but one allele. Although spatial autocorrelation was detected with Moran's I and Geary's c for two alleles, the geographical patterns of I in correlograms of 18 independent alleles showed a "crazy-quilt" pattern of allele-frequency patches. This shows that the isolation-by-distance model of subpopulation structure is inappropriate for these birds. Individuals, therefore, appear to disperse far beyond neighboring populations. "Private-allele" and FST estimates of migration under the island model were 8-9 individuals between localities of each generation. Allele-frequency heterogeneity, large amounts of gene flow, and the general lack of spatial autocorrelation imply that the small, socially-structured populations of greywing are subject to high rates of turnover, founder effects, and random drift.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa