Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 24(2): 93-98, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29699596

RESUMO

The ability to characterize recombination and carrier trapping processes in group-III nitride-based nanowires is vital to further improvements in their overall efficiencies. While advances in scanning transmission electron microscope (STEM)-based cathodoluminescence (CL) have offered some insight into nanowire behavior, inconsistencies in nanowire emission along with CL detector limitations have resulted in the incomplete understanding in nanowire emission processes. Here, two nanowire heterostructures were explored with STEM-CL: a polarization-graded AlGaN nanowire light-emitting diode (LED) with a GaN quantum disk and a polarization-graded AlGaN nanowire with three different InGaN quantum disks. Most nanowires explored in this study did not emit. For the wires that did emit in both structures, they exhibited asymmetrical emission consistent with the polarization-induced electric fields in the barrier regions of the nano-LEDs. In the AlGaN/InGaN sample, two of the quantum disks exhibited no emission potentially due to the three-dimensional landscape of the sample or due to limitations in the CL detection.

2.
J Am Chem Soc ; 139(20): 6960-6968, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28485966

RESUMO

Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described. The epitaxial nature, low strain character, and crystallographic defect content of the resultant solid Ge films were analyzed by electron backscatter diffraction, scanning transmission electron microscopy, high resolution X-ray diffraction, and electron channeling contrast imaging. The results here show the first step toward a manufacturing infrastructure for traditional crystalline inorganic semiconductor epifilms that does not require high temperature, gaseous precursors, or complex apparatus.

3.
J Vis Exp ; (101): e52745, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26274560

RESUMO

Misfit dislocations in heteroepitaxial layers of GaP grown on Si(001) substrates are characterized through use of electron channeling contrast imaging (ECCI) in a scanning electron microscope (SEM). ECCI allows for imaging of defects and crystallographic features under specific diffraction conditions, similar to that possible via plan-view transmission electron microscopy (PV-TEM). A particular advantage of the ECCI technique is that it requires little to no sample preparation, and indeed can use large area, as-produced samples, making it a considerably higher throughput characterization method than TEM. Similar to TEM, different diffraction conditions can be obtained with ECCI by tilting and rotating the sample in the SEM. This capability enables the selective imaging of specific defects, such as misfit dislocations at the GaP/Si interface, with high contrast levels, which are determined by the standard invisibility criteria. An example application of this technique is described wherein ECCI imaging is used to determine the critical thickness for dislocation nucleation for GaP-on-Si by imaging a range of samples with various GaP epilayer thicknesses. Examples of ECCI micrographs of additional defect types, including threading dislocations and a stacking fault, are provided as demonstration of its broad, TEM-like applicability. Ultimately, the combination of TEM-like capabilities - high spatial resolution and richness of microstructural data - with the convenience and speed of SEM, position ECCI as a powerful tool for the rapid characterization of crystalline materials.

4.
J Chem Phys ; 126(8): 084703, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17343465

RESUMO

The correlation between atomic bonding sites and the electronic structure of SiO on GaAs(001)-c(2x8)/(2x4) was investigated using scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and density functional theory (DFT). At low coverage, STM images reveal that SiO molecules bond Si end down; this is consistent with Si being undercoordinated and O being fully coordinated in molecular SiO. At approximately 5% ML (monolayer) coverage, multiple bonding geometries were observed. To confirm the site assignments from STM images, DFT calculations were used to estimate the total adsorption energies of the different bonding geometries as a function of SiO coverage. STS measurements indicated that SiO pins the Fermi level midgap at approximately 5% ML coverage. DFT calculations reveal that the direct causes of Fermi level pinning at the SiO GaAs(001)-(2x4) interface are a result of either local charge buildups or the generation of partially filled dangling bonds on Si atoms.

5.
J Chem Phys ; 127(13): 134705, 2007 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-17919041

RESUMO

A systematic experimental and theoretical study was performed to determine the causes of oxide-induced Fermi level pinning and unpinning on GaAs(001)-c(2 x 8)/(2 x 4). Scanning tunneling spectroscopy (STS) and density functional theory (DFT) were used to study four different adsorbates' (O(2), In(2)O, Ga(2)O, and SiO) bonding to the GaAs(001)-c(2 x 8)/(2 x 4) surface. The STS results revealed that out of the four adsorbates studied, only one left the Fermi level unpinned, Ga(2)O. DFT calculations were used to elucidate the causes of the Fermi level pinning. Two distinct pinning mechanisms were identified: direct (adsorbate induced states in the band gap region) and indirect pinnings (generation of undimerized As atoms). For O(2) dissociative chemisorption onto GaAs(001)-c(2 x 8)/(2 x 4), the Fermi level pinning was only indirect, while direct Fermi level pinning was observed when In(2)O was deposited on GaAs(001)-c(2 x 8)/(2 x 4). In the case of SiO on GaAs(001)-c(2 x 8)/(2 x 4), the Fermi level pinning was a combination of the two mechanisms.

6.
J Chem Phys ; 121(18): 9018-30, 2004 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-15527367

RESUMO

Nonresonant multiphoton ionization with time-of-flight mass spectrometry has been used to monitor the desorption of aluminum chloride (Al(x)Cl(y)) etch products from the Al(111) surface at 100 and 500 K during low-coverage (<5% monolayer) monoenergetic Cl(2) (0.11-0.65 eV) dosing. The desorption products in this low-coverage range show predominantly hyperthermal exit velocities under all dosing conditions. For example, with 0.27 eV incident Cl(2), the etch product was found to have a most-probable velocity of 517+/-22 m/s at an Al(111) surface temperature of 100 K. This corresponds to 22 times the expected thermal desorption translational energy for AlCl(3). Cl(2) sticking probability measurements and Al(x)Cl(y) etch rate measurements show etching even at Cl(2) coverages of less than 5% monolayer at surface temperatures between 100 and 500 K. These experimental results are consistent with a combination of fast-time-scale surface diffusion and agglomeration of the adsorbed chlorine to form aluminum chlorides and the presence of activated AlCl(3) chemisorption states having potential energies above the vacuum level. Density functional theory calculations yield results that are consistent with both our experimental findings and mechanistic descriptions.


Assuntos
Compostos de Alumínio/química , Alumínio/química , Físico-Química/métodos , Cloretos/química , Cloro/química , Adsorção , Cloreto de Alumínio , Difusão , Temperatura Alta , Modelos Químicos , Modelos Estatísticos , Fótons , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Propriedades de Superfície , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa