Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(7): 1193-1206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834865

RESUMO

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.


Assuntos
Movimento Celular , Células Dendríticas , Homeostase , Linfonodos , Camundongos Endogâmicos C57BL , Receptores CCR7 , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfonodos/imunologia , Linfonodos/citologia , Receptores CCR7/metabolismo , Camundongos , Movimento Celular/imunologia , Forma Celular , NF-kappa B/metabolismo , Camundongos Knockout , Transdução de Sinais/imunologia , Quinase I-kappa B/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
2.
Cell ; 184(20): 5230-5246.e22, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551315

RESUMO

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Senescência Celular , Colágeno/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Membrana Nuclear/ultraestrutura , Proteólise , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541862

RESUMO

XBP1 is a stress-regulated transcription factor also involved in mammalian host defenses and innate immune response. Our investigation of XBP1 RNA splicing during rotavirus infection revealed that an additional XBP1 RNA (XBP1es) that corresponded to exon skipping in the XBP1 pre-RNA is induced depending on the rotavirus strain used. We show that the translation product of XBP1es (XBP1es) has trans-activation properties similar to those of XBP1 on ER stress response element (ERSE) containing promoters. Using monoreassortant between ES+ ("skipping") and ES- ("nonskipping") strains of rotavirus, we show that gene 7 encoding the viral translation enhancer NSP3 is involved in this phenomenon and that exon skipping parallels the nuclear relocalization of cytoplasmic PABP. We further show, using recombinant rotaviruses carrying chimeric gene 7, that the ES+ phenotype is linked to the eIF4G-binding domain of NSP3. Because the XBP1 transcription factor is involved in stress and immunological responses, our results suggest an alternative way to activate XBP1 upon viral infection or nuclear localization of PABP.IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. Here we show that infection with several rotavirus strains induces an alternative splicing of the RNA encoding the stressed-induced transcription factor XBP1. The genetic determinant of XBP1 splicing is the viral RNA translation enhancer NSP3. Since XBP1 is involved in cellular stress and immune responses and since the XBP1 protein made from the alternatively spliced RNA is an active transcription factor, our observations raise the question of whether alternative splicing is a cellular response to rotavirus infection.


Assuntos
Processamento Alternativo/genética , RNA Mensageiro/genética , Rotavirus/genética , Proteínas não Estruturais Virais/genética , Proteína 1 de Ligação a X-Box/genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Macaca mulatta , Proteínas de Ligação a Poli(A)/genética , Domínios Proteicos/genética , RNA Viral/genética , Infecções por Rotavirus/patologia
4.
J Virol ; 89(17): 8773-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063427

RESUMO

UNLABELLED: Through its interaction with the 5' translation initiation factor eIF4G, poly(A) binding protein (PABP) facilitates the translation of 5'-capped and 3'-poly(A)-tailed mRNAs. Rotavirus mRNAs are capped but not polyadenylated, instead terminating in a 3' GACC motif that is recognized by the viral protein NSP3, which competes with PABP for eIF4G binding. Upon rotavirus infection, viral, GACC-tailed mRNAs are efficiently translated, while host poly(A)-tailed mRNA translation is, in contrast, severely impaired. To explore the roles of NSP3 in these two opposing events, the translational capabilities of three capped mRNAs, distinguished by either a GACC, a poly(A), or a non-GACC and nonpoly(A) 3' end, have been monitored after electroporation of cells expressing all rotavirus proteins (infected cells) or only NSP3 (stably or transiently transfected cells). In infected cells, we found that the magnitudes of translation induction (GACC-tailed mRNA) and translation reduction [poly(A)-tailed mRNA] both depended on the rotavirus strain used but that translation reduction not genetically linked to NSP3. In transfected cells, even a small amount of NSP3 was sufficient to dramatically enhance GACC-tailed mRNA translation and, surprisingly, to slightly favor the translation of both poly(A)- and nonpoly(A)-tailed mRNAs, likely by stabilizing the eIF4E-eIF4G interaction. These data suggest that NSP3 is a translational surrogate of the PABP-poly(A) complex; therefore, it cannot by itself be responsible for inhibiting the translation of host poly(A)-tailed mRNAs upon rotavirus infection. IMPORTANCE: To control host cell physiology and to circumvent innate immunity, many viruses have evolved powerful mechanisms aimed at inhibiting host mRNA translation while stimulating translation of their own mRNAs. How rotavirus tackles this challenge is still a matter of debate. Using rotavirus-infected cells, we show that the magnitude of cellular poly(A) mRNA translation differs with respect to rotavirus strains but is not genetically linked to NSP3. Using cells expressing rotavirus NSP3, we show that NSP3 alone not only dramatically enhances rotavirus-like mRNA translation but also enhances poly(A) mRNA translation rather than inhibiting it, likely by stabilizing the eIF4E-eIF4G complex. Thus, the inhibition of cellular polyadenylated mRNA translation during rotavirus infection cannot be attributed solely to NSP3 and is more likely the result of global competition between viral and host mRNAs for the cellular translation machinery.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Cricetinae , Eletroporação , Células HeLa , Humanos , Macaca mulatta , Poli A/genética , Poliadenilação/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Viral/genética , Rotavirus/genética , Infecções por Rotavirus/virologia , Transfecção
5.
J Exp Med ; 216(5): 1199-1213, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936263

RESUMO

Cellular innate immune sensors of DNA are essential for host defense against invading pathogens. However, the presence of self-DNA inside cells poses a risk of triggering unchecked immune responses. The mechanisms limiting induction of inflammation by self-DNA are poorly understood. BLM RecQ-like helicase is essential for genome integrity and is deficient in Bloom syndrome (BS), a rare genetic disease characterized by genome instability, accumulation of micronuclei, susceptibility to cancer, and immunodeficiency. Here, we show that BLM-deficient fibroblasts show constitutive up-regulation of inflammatory interferon-stimulated gene (ISG) expression, which is mediated by the cGAS-STING-IRF3 cytosolic DNA-sensing pathway. Increased DNA damage or down-regulation of the cytoplasmic exonuclease TREX1 enhances ISG expression in BLM-deficient fibroblasts. cGAS-containing cytoplasmic micronuclei are increased in BS cells. Finally, BS patients demonstrate elevated ISG expression in peripheral blood. These results reveal that BLM limits ISG induction, thus connecting DNA damage to cellular innate immune response, which may contribute to human pathogenesis.


Assuntos
Imunidade Inata/imunologia , Nucleotidiltransferases/metabolismo , RecQ Helicases/imunologia , 2',5'-Oligoadenilato Sintetase/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Síndrome de Bloom/patologia , Criança , Citosol/metabolismo , Dano ao DNA/imunologia , Exodesoxirribonucleases/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Fator Regulador 3 de Interferon/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , RecQ Helicases/genética , Transcriptoma , Transdução Genética , Proteínas Supressoras de Tumor/genética
6.
PLoS One ; 11(1): e0145998, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727111

RESUMO

Rotavirus NSP3 is a translational surrogate of the PABP-poly(A) complex for rotavirus mRNAs. To further explore the effects of NSP3 and untranslated regions (UTRs) on rotavirus mRNAs translation, we used a quantitative in vivo assay with simultaneous cytoplasmic NSP3 expression (wild-type or deletion mutant) and electroporated rotavirus-like and standard synthetic mRNAs. This assay shows that the last four GACC nucleotides of viral mRNA are essential for efficient translation and that both the NSP3 eIF4G- and RNA-binding domains are required. We also show efficient translation of rotavirus-like mRNAs even with a 5'UTR as short as 5 nucleotides, while more than eleven nucleotides are required for the 3'UTR. Despite the weak requirement for a long 5'UTR, a good AUG environment remains a requirement for rotavirus mRNAs translation.


Assuntos
Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas não Estruturais Virais/fisiologia , Animais , Sequência de Bases , Linhagem Celular , Cricetinae , Mutagênese Sítio-Dirigida , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Proteínas não Estruturais Virais/genética
7.
Virus Res ; 176(1-2): 144-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23796411

RESUMO

The complete coding sequences of the four unassigned temperature-sensitive (ts) Baylor prototype rotavirus mutants (SA11ts D, H, I and J) were sequenced by deep sequencing double-stranded RNA using RNA-seq. Non-silent mutations were assigned to a specific mutant by Sanger sequencing RT-PCR products from each mutant. Mutations that led to amino acid changes were found in all genes except for genes 1 (VP1), 10 (NSP4) and 11 (NSP5/6). Based on these sequence analyses and earlier genetic analyses, the ts mutations in gene 7, which encodes the protein NSP3, were assigned to ts mutant groups I and H, and confirmed by an in vitro RNA-binding assay with recombinant proteins. In addition, ts mutations in gene 6 were assigned to tsJ. The presence of non-conservative mutations in two genes of two mutants (genes 4 and 2 in tsD and genes 3 and 7 in tsH) underscores the necessity of sequencing the whole genome of each rotavirus ts mutant prototype.


Assuntos
Mutação de Sentido Incorreto , Rotavirus/genética , Rotavirus/efeitos da radiação , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Replicação Viral/efeitos da radiação , Análise Mutacional de DNA , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , RNA Viral/genética , Rotavirus/fisiologia , Temperatura , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa