Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Alzheimers Dement ; 16(5): 750-758, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32281303

RESUMO

INTRODUCTION: The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) Prognostic and Natural History Study (PNHS) aims at understanding the role of amyloid imaging in the earliest stages of Alzheimer's disease (AD). AMYPAD PNHS adds (semi-)quantitative amyloid PET imaging to several European parent cohorts (PCs) to predict AD-related progression as well as address methodological challenges in amyloid PET. METHODS: AMYPAD PNHS is an open-label, prospective, multi-center, cohort study recruiting from multiple PCs. Around 2000 participants will undergo baseline amyloid positron emission tomography (PET), half of whom will be invited for a follow-up PET 12 at least 12 months later. RESULTS: Primary include several amyloid PET measurements (Centiloid, SUVr, BPND , R1 ), and secondary are their changes from baseline, relationship to other amyloid markers (cerebrospinal fluid and visual assessment), and predictive value of AD-related decline. EXPECTED IMPACT: Determining the role of amyloid PET for the understanding of this complex disease and potentially improving secondary prevention trials.


Assuntos
Doença de Alzheimer , Amiloide/metabolismo , Biomarcadores/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Progressão da Doença , Europa (Continente) , Feminino , Voluntários Saudáveis , Humanos , Estudos Longitudinais , Masculino , Estudos Prospectivos
2.
Neuroimage ; 111: 562-79, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25652394

RESUMO

Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n=30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org.


Assuntos
Algoritmos , Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico , Diagnóstico por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/classificação , Disfunção Cognitiva/classificação , Diagnóstico por Computador/normas , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
3.
Neuroimage ; 65: 167-75, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041336

RESUMO

Neurodegenerative disorders, such as Alzheimer's disease, are associated with changes in multiple neuroimaging and biological measures. These may provide complementary information for diagnosis and prognosis. We present a multi-modality classification framework in which manifolds are constructed based on pairwise similarity measures derived from random forest classifiers. Similarities from multiple modalities are combined to generate an embedding that simultaneously encodes information about all the available features. Multi-modality classification is then performed using coordinates from this joint embedding. We evaluate the proposed framework by application to neuroimaging and biological data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Features include regional MRI volumes, voxel-based FDG-PET signal intensities, CSF biomarker measures, and categorical genetic information. Classification based on the joint embedding constructed using information from all four modalities out-performs the classification based on any individual modality for comparisons between Alzheimer's disease patients and healthy controls, as well as between mild cognitive impairment patients and healthy controls. Based on the joint embedding, we achieve classification accuracies of 89% between Alzheimer's disease patients and healthy controls, and 75% between mild cognitive impairment patients and healthy controls. These results are comparable with those reported in other recent studies using multi-kernel learning. Random forests provide consistent pairwise similarity measures for multiple modalities, thus facilitating the combination of different types of feature data. We demonstrate this by application to data in which the number of features differs by several orders of magnitude between modalities. Random forest classifiers extend naturally to multi-class problems, and the framework described here could be applied to distinguish between multiple patient groups in the future.


Assuntos
Doença de Alzheimer/classificação , Doença de Alzheimer/diagnóstico , Inteligência Artificial , Modelos Teóricos , Idoso , Doença de Alzheimer/fisiopatologia , Biomarcadores/análise , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons
4.
Neuroimage ; 60(1): 221-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22236449

RESUMO

Imaging biomarkers for Alzheimer's disease are desirable for improved diagnosis and monitoring, as well as drug discovery. Automated image-based classification of individual patients could provide valuable diagnostic support for clinicians, when considered alongside cognitive assessment scores. We investigate the value of combining cross-sectional and longitudinal multi-region FDG-PET information for classification, using clinical and imaging data from the Alzheimer's Disease Neuroimaging Initiative. Whole-brain segmentations into 83 anatomically defined regions were automatically generated for baseline and 12-month FDG-PET images. Regional signal intensities were extracted at each timepoint, as well as changes in signal intensity over the follow-up period. Features were provided to a support vector machine classifier. By combining 12-month signal intensities and changes over 12 months, we achieve significantly increased classification performance compared with using any of the three feature sets independently. Based on this combined feature set, we report classification accuracies of 88% between patients with Alzheimer's disease and elderly healthy controls, and 65% between patients with stable mild cognitive impairment and those who subsequently progressed to Alzheimer's disease. We demonstrate that information extracted from serial FDG-PET through regional analysis can be used to achieve state-of-the-art classification of diagnostic groups in a realistic multi-centre setting. This finding may be usefully applied in the diagnosis of Alzheimer's disease, predicting disease course in individuals with mild cognitive impairment, and in the selection of participants for clinical trials.


Assuntos
Doença de Alzheimer/classificação , Doença de Alzheimer/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Idoso , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons/métodos
5.
EJNMMI Res ; 12(1): 29, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35553267

RESUMO

BACKGROUND: Despite its widespread use, the semi-quantitative standardized uptake value ratio (SUVR) may be biased compared with the distribution volume ratio (DVR). This bias may be partially explained by changes in cerebral blood flow (CBF) and is likely to be also dependent on the extent of the underlying amyloid-ß (Aß) burden. This study aimed to compare SUVR with DVR and to evaluate the effects of underlying Aß burden and CBF on bias in SUVR in mainly cognitively unimpaired participants. Participants were scanned according to a dual-time window protocol, with either [18F]flutemetamol (N = 90) or [18F]florbetaben (N = 31). The validated basisfunction-based implementation of the two-step simplified reference tissue model was used to derive DVR and R1 parametric images, and SUVR was calculated from 90 to 110 min post-injection, all with the cerebellar grey matter as reference tissue. First, linear regression and Bland-Altman analyses were used to compare (regional) SUVR with DVR. Then, generalized linear models were applied to evaluate whether (bias in) SUVR relative to DVR could be explained by R1 for the global cortical average (GCA), precuneus, posterior cingulate, and orbitofrontal region. RESULTS: Despite high correlations (GCA: R2 ≥ 0.85), large overestimation and proportional bias of SUVR relative to DVR was observed. Negative associations were observed between both SUVR or SUVRbias and R1, albeit non-significant. CONCLUSION: The present findings demonstrate that bias in SUVR relative to DVR is strongly related to underlying Aß burden. Furthermore, in a cohort consisting mainly of cognitively unimpaired individuals, the effect of relative CBF on bias in SUVR appears limited. EudraCT Number: 2018-002277-22, registered on: 25-06-2018.

6.
Neuroimage ; 56(4): 2024-37, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21397703

RESUMO

This paper presents a novel, publicly available repository of anatomically segmented brain images of healthy subjects as well as patients with mild cognitive impairment and Alzheimer's disease. The underlying magnetic resonance images have been obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. T1-weighted screening and baseline images (1.5T and 3T) have been processed with the multi-atlas based MAPER procedure, resulting in labels for 83 regions covering the whole brain in 816 subjects. Selected segmentations were subjected to visual assessment. The segmentations are self-consistent, as evidenced by strong agreement between segmentations of paired images acquired at different field strengths (Jaccard coefficient: 0.802±0.0146). Morphometric comparisons between diagnostic groups (normal; stable mild cognitive impairment; mild cognitive impairment with progression to Alzheimer's disease; Alzheimer's disease) showed highly significant group differences for individual regions, the majority of which were located in the temporal lobe. Additionally, significant effects were seen in the parietal lobe. Increased left/right asymmetry was found in posterior cortical regions. An automatically derived white-matter hypointensities index was found to be a suitable means of quantifying white-matter disease. This repository of segmentations is a potentially valuable resource to researchers working with ADNI data.


Assuntos
Doença de Alzheimer/patologia , Mapeamento Encefálico/métodos , Encéfalo/patologia , Transtornos Cognitivos/patologia , Interpretação de Imagem Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
7.
Neurology ; 87(12): 1235-41, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27558378

RESUMO

OBJECTIVE: To investigate the effect of enriching mild cognitive impairment (MCI) clinical trials using combined markers of amyloid pathology and neurodegeneration. METHODS: We evaluate an implementation of the recent National Institute for Aging-Alzheimer's Association (NIA-AA) diagnostic criteria for MCI due to Alzheimer disease (AD) as inclusion criteria in clinical trials and assess the effect of enrichment with amyloid (A+), neurodegeneration (N+), and their combination (A+N+) on the rate of clinical progression, required sample sizes, and estimates of trial time and cost. RESULTS: Enrichment based on an individual marker (A+ or N+) substantially improves all assessed trial characteristics. Combined enrichment (A+N+) further improves these results with a reduction in required sample sizes by 45% to 60%, depending on the endpoint. CONCLUSIONS: Operationalizing the NIA-AA diagnostic criteria for clinical trial screening has the potential to substantially improve the statistical power of trials in MCI due to AD by identifying a more rapidly progressing patient population.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Ensaios Clínicos como Assunto , Disfunção Cognitiva/metabolismo , Idoso , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores/líquido cefalorraquidiano , Encéfalo/metabolismo , Ensaios Clínicos como Assunto/economia , Ensaios Clínicos como Assunto/métodos , Disfunção Cognitiva/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Degeneração Neural/diagnóstico por imagem , Degeneração Neural/metabolismo , Tomografia por Emissão de Pósitrons
8.
PLoS One ; 10(7): e0129211, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161961

RESUMO

Accurately delineating the brain on magnetic resonance (MR) images of the head is a prerequisite for many neuroimaging methods. Most existing methods exhibit disadvantages in that they are laborious, yield inconsistent results, and/or require training data to closely match the data to be processed. Here, we present pincram, an automatic, versatile method for accurately labelling the adult brain on T1-weighted 3D MR head images. The method uses an iterative refinement approach to propagate labels from multiple atlases to a given target image using image registration. At each refinement level, a consensus label is generated. At the subsequent level, the search for the brain boundary is constrained to the neighbourhood of the boundary of this consensus label. The method achieves high accuracy (Jaccard coefficient > 0.95 on typical data, corresponding to a Dice similarity coefficient of > 0.97) and performs better than many state-of-the-art methods as evidenced by independent evaluation on the Segmentation Validation Engine. Via a novel self-monitoring feature, the program generates the "success index," a scalar metadatum indicative of the accuracy of the output label. Pincram is available as open source software.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Software , Adulto , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Adulto Jovem
10.
Phys Med Biol ; 55(3): 695-709, 2010 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-20071760

RESUMO

[(18)F]Fluorothymidine (FLT) is a cell proliferation marker that undergoes predominantly hepatic metabolism and therefore shows a high level of accumulation in the liver, as well as in rapidly proliferating tumours. Furthermore, the tracer's uptake is substantial in other organs including the heart. We present a nonlinear kinetic filtering technique which enhances the visualization of tumours imaged with FLT positron emission tomography (FLT-PET). A classification algorithm to isolate cancerous tissue from healthy organs was developed and validated using 29 scan data from patients with locally advanced or metastatic breast cancer. A large reduction in signal from the liver and heart of 80% was observed following application of the kinetic filter, whilst the majority of signal from both primary tumours and metastases was retained. A scan acquisition time of 60 min has been shown to be sufficient to obtain the necessary kinetic data. The algorithm extends utility of FLT-PET imaging in oncology research.


Assuntos
Algoritmos , Meios de Contraste , Didesoxinucleosídeos , Tomografia por Emissão de Pósitrons/métodos , Processamento de Sinais Assistido por Computador , Idoso , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias Colorretais/patologia , Didesoxinucleosídeos/sangue , Feminino , Coração/diagnóstico por imagem , Humanos , Cinética , Modelos Lineares , Fígado/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa