Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Am Chem Soc ; 146(18): 12620-12635, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669614

RESUMO

High-entropy semiconductors are now an important class of materials widely investigated for thermoelectric applications. Understanding the impact of chemical and structural heterogeneity on transport properties in these compositionally complex systems is essential for thermoelectric design. In this work, we uncover the polar domain structures in the high-entropy PbGeSnSe1.5Te1.5 system and assess their impact on thermoelectric properties. We found that polar domains induced by crystal symmetry breaking give rise to well-structured alternating strain fields. These fields effectively disrupt phonon propagation and suppress the thermal conductivity. We demonstrate that the polar domain structures can be modulated by tuning crystal symmetry through entropy engineering in PbGeSnAgxSbxSe1.5+xTe1.5+x. Incremental increases in the entropy enhance the crystal symmetry of the system, which suppresses domain formation and loses its efficacy in suppressing phonon propagation. As a result, the room-temperature lattice thermal conductivity increases from κL = 0.63 Wm-1 K-1 (x = 0) to 0.79 Wm-1 K-1 (x = 0.10). In the meantime, the increase in crystal symmetry, however, leads to enhanced valley degeneracy and improves the weighted mobility from µw = 29.6 cm2 V-1 s-1 (x = 0) to 35.8 cm2 V-1 s-1 (x = 0.10). As such, optimal thermoelectric performance can be achieved through entropy engineering by balancing weighted mobility and lattice thermal conductivity. This work, for the first time, studies the impact of polar domain structures on thermoelectric properties, and the developed understanding of the intricate interplay between crystal symmetry, polar domains, and transport properties, along with the impact of entropy control, provides valuable insights into designing GeTe-based high-entropy thermoelectrics.

2.
Chemistry ; : e202403413, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287365

RESUMO

Herein, we report a mechanistic investigation of a recently developed electrochemical method for the deconstructive methoxylation of arylalcohols. A combination of synthetic, electroanalytical, and computational experiments have been performed to gain a deeper understanding of the reaction mechanism and the structural requirements for fragmentation to occur. It was found that 2-arylalcohols undergo anodic oxidation to form the corresponding aromatic radical cations, which fragment to form oxocarbenium ions and benzylic radical intermediates via mesolytic cleavage, with further anodic oxidation and trapping of the benzylic carbocation with methanol to generate the observed methyl ether products. It was also found that the electrochemical fragmentation of 2-arylalkanols is promoted by structural features that stabilize the oxocarbenium ions and/or benzylic radical intermediates formed upon mesolytic cleavage of the aromatic radical cations. With an enhanced understanding of the reaction mechanism and the structural features that promote fragmentation, it is anticipated that alternative electrosynthetic transformations will be developed that utilize this powerful, yet underdeveloped, mode of substrate activation.

3.
Macromol Rapid Commun ; : e2400303, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991017

RESUMO

One method to improve the properties of covalent adaptable networks (CANs) is to reinforce them with a fraction of permanent cross-links without sacrificing their (re)processability. Here, a simple method to synthesize poly(n-hexyl methacrylate) (PHMA) and poly(n-lauryl methacrylate) (PLMA) networks containing static dialkyl disulfide cross-links (utilizing bis(2-methacryloyl)oxyethyl disulfide, or DSDMA, as a permanent cross-linker) and dynamic dialkylamino sulfur-sulfur cross-links (utilizing BiTEMPS methacrylate as a dissociative dynamic covalent cross-linker) is presented. The robustness and (re)processability of the CANs are demonstrated, including the full recovery of cross-link density after recycling. The authors also investigate the effect of static cross-link content on the stress relaxation responses of the CANs with and without percolated, static cross-links. As PHMA and PLMA have very different activation energies of their respective cooperative segmental mobilities, it is shown that the dissociative CANs without percolated, static cross-links have activation energies of stress relaxation that are dominated by the dissociation of BiTEMPS methacrylate cross-links rather than by the cooperative relaxations of backbone segments, i.e., the alpha relaxation. In CANs with percolated, static cross-links, the segmental relaxation of side chains, i.e., the beta relaxation, is critical in allowing for large-scale stress relaxation and governs their activation energies of stress relaxation.

4.
Anal Chem ; 95(2): 703-713, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36599091

RESUMO

With synthetic cannabinoid receptor agonist (SCRA) use still prevalent across Europe and structurally advanced generations emerging, it is imperative that drug detection methods advance in parallel. SCRAs are a chemically diverse and evolving group, which makes rapid detection challenging. We have previously shown that fluorescence spectral fingerprinting (FSF) has the potential to provide rapid assessment of SCRA presence directly from street material with minimal processing and in saliva. Enhancing the sensitivity and discriminatory ability of this approach has high potential to accelerate the delivery of a point-of-care technology that can be used confidently by a range of stakeholders, from medical to prison staff. We demonstrate that a range of structurally distinct SCRAs are photochemically active and give rise to distinct FSFs after irradiation. To explore this in detail, we have synthesized a model series of compounds which mimic specific structural features of AM-694. Our data show that FSFs are sensitive to chemically conservative changes, with evidence that this relates to shifts in the electronic structure and cross-conjugation. Crucially, we find that the photochemical degradation rate is sensitive to individual structures and gives rise to a specific major product, the mechanism and identification of which we elucidate through density-functional theory (DFT) and time-dependent DFT. We test the potential of our hybrid "photochemical fingerprinting" approach to discriminate SCRAs by demonstrating SCRA detection from a simulated smoking apparatus in saliva. Our study shows the potential of tracking photochemical reactivity via FSFs for enhanced discrimination of SCRAs, with successful integration into a portable device.


Assuntos
Agonistas de Receptores de Canabinoides , Drogas Ilícitas , Humanos , Agonistas de Receptores de Canabinoides/química , Sistemas Automatizados de Assistência Junto ao Leito , Detecção do Abuso de Substâncias/métodos
5.
Chemistry ; 28(63): e202202454, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35943082

RESUMO

Herein, we report the B(C6 F5 )3 -catalyzed E-selective isomerization of alkenes. The transition-metal-free method is applicable across a diverse array of readily accessible substrates, giving access to a broad range of synthetically useful products containing versatile stereodefined internal alkenes. The reaction mechanism was investigated by using synthetic and computational methods.


Assuntos
Alcenos , Catálise , Isomerismo
6.
J Org Chem ; 87(15): 10054-10061, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35849546

RESUMO

Current models for oxazaborolidine-catalyzed transition-state structures are determined by C-H···O-B and C-H···O═S formyl hydrogen bonding between the electrophile and catalyst. However, selectivity in the oxazaborolidine-catalyzed Mukaiyama aldol cannot be fully rationalized using these models. Combined density functional theory and noncovalent interaction analyses reveal a new reaction model relying on C-H···O, C-H···π, and π-π interactions between the nucleophile, electrophile, and catalyst to induce selectivity.


Assuntos
Aldeídos , Hidrogênio , Aldeídos/química , Catálise , Ligação de Hidrogênio , Estereoisomerismo
7.
J Org Chem ; 87(9): 5703-5712, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35476461

RESUMO

Here, we compare the relative performances of different force fields for conformational searching of hydrogen-bond-donating catalyst-like molecules. We assess the force fields by their predictions of conformer energies, geometries, low-energy, nonredundant conformers, and the maximum numbers of possible conformers. Overall, MM3, MMFFs, and OPLS3e had consistently strong performances and are recommended for conformationally searching molecules structurally similar to those in this study.


Assuntos
Hidrogênio , Ligação de Hidrogênio , Conformação Molecular
8.
J Org Chem ; 87(5): 3482-3490, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179890

RESUMO

Enantioselective sulfa-Michael additions to α,ß unsaturated diazocarbonyl compounds have been developed. Quinine-derived squaramide was found to be the best catalyst to promote C-S bond formation in a highly stereoselective fashion for alkyl and aryl thiols. The easy-to-follow protocol allowed the preparation of 22 examples in enantiomeric ratios up to 97:3 and reaction yields up to 94%. The mechanism and origins of enantioselectivity were determined through density functional theory (DFT) calculations.


Assuntos
Compostos de Sulfidrila , Catálise , Estereoisomerismo , Compostos de Sulfidrila/química
9.
J Am Chem Soc ; 143(16): 6221-6228, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856803

RESUMO

Chalcogenide-based phase change memory (PCM) is a key enabling technology for optical data storage and electrical nonvolatile memory. Here, we report a new phase change chalcogenide consisting of a 3D network of ionic (K···Se) and covalent bonds (Bi-Se), K2Bi8Se13 (KBS). Thin films of amorphous KBS deposited by DC sputtering are structurally and chemically homogeneous and exhibit a surface roughness of 5 nm. The KBS film crystallizes upon heating at ∼483 K. The optical bandgap of the amorphous film is about 1.25 eV, while its crystalline phase has a bandgap of ∼0.65 eV shows 2-fold difference between the two states. The bulk electrical conductivity of the amorphous and crystalline film is ∼7.5 × 10-4 and ∼2.7 × 10-2 S/cm, respectively. We have demonstrated a phase change memory effect in KBS by Joule heating in a technologically relevant vertical memory cell architecture. Upon Joule heating, the vertical device undergoes switching from its amorphous to crystalline state of KBS at 1-1.5 V (∼50 kV/cm), increasing conductivity by a factor of ∼40. Besides the large electrical and optical contrast in the crystalline and amorphous KBS, its elemental cost-effectiveness, stoichiometry, fast crystallization kinetics, as determined by the ratio of the glass transition and melting temperature, Tg/Tm ∼ 0.5, as well as the scalable synthesis of the thin film determine that KBS is a promising PC material for next general phase change memory.

10.
Chem Res Toxicol ; 34(2): 179-188, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32643924

RESUMO

As a field, computational toxicology is concerned with using in silico models to predict and understand the origins of toxicity. It is fast, relatively inexpensive, and avoids the ethical conundrum of using animals in scientific experimentation. In this perspective, we discuss the importance of computational models in toxicology, with a specific focus on the different model types that can be used in predictive toxicological approaches toward mutagenicity (SARs and QSARs). We then focus on how quantum chemical methods, such as density functional theory (DFT), have previously been used in the prediction of mutagenicity. It is then discussed how DFT allows for the development of new chemical descriptors that focus on capturing the steric and energetic effects that influence toxicological reactions. We hope to demonstrate the role that DFT plays in understanding the fundamental, intrinsic chemistry of toxicological reactions in predictive toxicology.


Assuntos
Teoria da Densidade Funcional , Testes de Mutagenicidade , Testes de Toxicidade , Animais , Relação Quantitativa Estrutura-Atividade
11.
J Org Chem ; 86(19): 13631-13635, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505785

RESUMO

Since Akiyama and Terada independently reported the introduction of chiral phosphoric acids (CPAs) as effective catalysts for Mannich-type reactions in 2004, the field of CPA catalysis has grown immensely. Terada reported in 2008 the first example of the activation of aldehydes by a CPA. Based on density functional theory (DFT) calculations, Terada proposed a dual activation mode for this enantioselective aza-ene-type reaction between an aldehyde and an enecarbamate. In this model, hydrogen bonds between the catalyst's hydroxyl group and the carbonyl oxygen and the catalyst's P═O and the formyl proton were observed; the nucleophile then attacks without coordination to the catalyst. This reaction model provided the mechanistic basis for understanding Terada's reaction and many other asymmetric transformations. In the present study, DFT calculations are reported that identify a lower-energy mechanism for this landmark reaction. In this new model, hydrogen bonds between the catalyst's hydroxyl group and the aldehyde oxygen and the catalyst's P═O and the NH group of the enecarbamate are seen. The new model rationalizes the stereoselective outcome of Terada's reaction and offers insight into why a more sterically demanding catalyst gives lower levels of enantioselectivity.

12.
Org Biomol Chem ; 19(16): 3656-3664, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908433

RESUMO

The first catalytic enantioselective aza-Cope rearrangement was reported in 2008 by Rueping et al. The reaction is catalyzed by a 1,1'-bi-2-naphthol-derived (BINOL-derived) phosphoric acid and achieved high yields and enantioselectivities (up to 97 : 3 er with 75% yield). This work utilizes Density Functional Theory to understand the mechanism of the reaction and explain the origins of the enantioselectivity. An extensive conformational search was carried out to explore the different activation modes by the catalyst and, the Transition State (TS) leading to the major product was found to be 1.3 kcal mol-1 lower in energy than the TS leading to the minor product. The origin of this stabilization was rationalized with NBO and NCI analysis: it was found that the major TS has a greater number of non-bonding interactions between the substrate and the catalyst, and shows stronger H-bond interactions between H atoms in the substrate and the O atoms in the phosphate group of the catalyst.

13.
Angew Chem Int Ed Engl ; 60(9): 4524-4528, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225519

RESUMO

Manipulating the stereochemistry of polymers is a powerful method to alter their physical properties. Despite the chirality of monosaccharides, reports on the impact of stereochemistry in natural polysaccharides and synthetic carbohydrate polymers remain absent. Herein, we report the cocrystallisation of regio- and stereoregular polyethers derived from d- and l-xylose, leading to enhanced thermal properties compared to the enantiopure polymers. To the best of our knowledge, this is the first example of a stereocomplex between carbohydrate polymers of opposite chirality. In contrast, atactic polymers obtained from a racemic mixture of monomers are amorphous. We also show that the polymer hydroxyl groups are amenable to post-polymerisation functionalization. These strategies afford a family of carbohydrate polyethers, the physical and chemical properties of which can both be controlled, and which opens new possibilities for polysaccharide mimics in biomedical applications or as advanced materials.

14.
Anal Chem ; 92(11): 7500-7507, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32347712

RESUMO

A method has been developed to reliably quantify the isotopic composition of liquid water, requiring only immersion of a "ReactIR" probe in the sample under test. The accuracy and robustness of this method has been extensively tested using a deuterium/protium system, and substantial improvements in sensitivity were obtained using highly novel chemical signal amplification methods demonstrating a standard deviation of 247 ppb D (a δD of 1.6 ‰). This compares favorably with other more costly and time-consuming techniques and is over 20 times more sensitive than any previously published FTIR study. Computational simulations of a model system match the experimental data and show how these methods can be adapted to a tritium/protium system.

15.
J Org Chem ; 85(23): 15449-15456, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33227201

RESUMO

The mechanism of the asymmetric BINOL-derived hydroxyl carboxylic acid catalyzed allylboration of benzaldehyde was investigated using density functional theory calculations. A new reaction model is proposed, and the roles of the two Brønsted acidic sites of the catalyst elucidated. Catalyst distortion was found to be a key factor in determining stereoselectivity. The flexibility of the hydroxyl carboxylic acid catalyst leads to significant differences in the mechanism and origins of selectivity compared to the equivalent phosphoric acid catalyzed reaction.

16.
Angew Chem Int Ed Engl ; 59(36): 15554-15559, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32352184

RESUMO

The first example of enantioselective S-H insertion reactions of sulfoxonium ylides is reported. Under the influence of thiourea catalysis, excellent levels of enantiocontrol (up to 95 % ee) and yields (up to 97 %) are achieved for 31 examples in S-H insertion reactions of aryl thiols and α-carbonyl sulfoxonium ylides.

17.
Angew Chem Int Ed Engl ; 59(51): 23107-23111, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32890415

RESUMO

(-)-Finerenone is a nonsteroidal mineralocorticoid receptor antagonist currently in phase III clinical trials for the treatment of chronic kidney disease in type 2 diabetes. It contains an unusual dihydronaphthyridine core. We report a 6-step synthesis of (-)-finerenone, which features an enantioselective partial transfer hydrogenation of a naphthyridine using a chiral phosphoric acid catalyst with a Hantzsch ester. The process is complicated by the fact that the naphthyridine exists as a mixture of two atropisomers that react at different rates and with different selectivities. The intrinsic kinetic resolution was converted into a kinetic dynamic resolution at elevated temperature, which enabled us to obtain (-)-finerenone in both high yield and high enantioselectivity. DFT calculations have revealed the origin of selectivity.


Assuntos
Antagonistas de Receptores de Mineralocorticoides/síntese química , Naftiridinas/síntese química , Teoria da Densidade Funcional , Hidrogenação , Antagonistas de Receptores de Mineralocorticoides/química , Estrutura Molecular , Naftiridinas/química , Estereoisomerismo
18.
Angew Chem Int Ed Engl ; 59(35): 14986-14991, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32391968

RESUMO

A practical, catalytic entry to α,α,α-trisubstituted (α-tertiary) primary amines by C-H functionalisation has long been recognised as a critical gap in the synthetic toolbox. We report a simple and scalable solution to this problem that does not require any in situ protection of the amino group and proceeds with 100 % atom-economy. Our strategy, which uses an organic photocatalyst in combination with azide ion as a hydrogen atom transfer (HAT) catalyst, provides a direct synthesis of α-tertiary amines, or their corresponding γ-lactams. We anticipate that this methodology will inspire new retrosynthetic disconnections for substituted amine derivatives in organic synthesis, and particularly for challenging α-tertiary primary amines.

19.
J Chem Inf Model ; 59(12): 5099-5103, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31774671

RESUMO

Assessing the safety of new chemicals, without introducing the need for animal testing, is a task of great importance. The Ames test, a widely used bioassay to assess mutagenicity, can be an expensive, wasteful process with animal-derived reagents. Existing in silico methods for the prediction of Ames test results are traditionally based on chemical category formation and can lead to false positive predictions. Category formation also neglects the intrinsic chemistry associated with DNA reactivity. Activation energies and HOMO/LUMO energies for thirty 1,4 Michael acceptors were calculated using a model nucleobase and were further used to predict the Ames test result of these compounds. The proposed model builds upon existing work and examines the fundamental toxicant-target interactions using density functional theory transition-state modeling. The results show that Michael acceptors with activation energies <20.7 kcal/mol and LUMO energies < -1.85 eV are likely to act as direct mutagens upon exposure to DNA.


Assuntos
Teoria da Densidade Funcional , Testes de Mutagenicidade , Mutagênicos/química , Guanina/metabolismo , Mutagênicos/toxicidade , Termodinâmica
20.
Angew Chem Int Ed Engl ; 58(43): 15268-15272, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31365776

RESUMO

Alkenyl boronic esters are important reagents in organic synthesis. Herein, we report that these valuable products can be accessed by the homologation of boronic esters with lithiated epoxysilanes. Aliphatic and electron-rich aromatic boronic esters provided vinylidene boronic esters in moderate to high yields, while electron-deficient aromatic and vinyl boronic esters were found to give the corresponding vinyl silane products. Through DFT calculations, this divergence in mechanistic pathway has been rationalized by considering the stabilization of negative charge in the C-Si and C-B bond breaking transition states. This vinylidene homologation was used in a short six-step stereoselective synthesis of the proposed structure of machillene, however, synthetic and reported data were found to be inconsistent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa