Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005611

RESUMO

Global Navigation Satellite Systems (GNSSs) are nowadays the prevailing technology for positioning and navigation. However, with the roll-out of 5G technology, there is a shift towards 'hybrid positioning': indeed, 5G time-of-arrival (ToA) measurements can provide additional ranging for positioning, especially in environments where few GNSS satellites are visible. This work reports a preliminary analysis, the processing, and the results of field measurements collected as part of the GINTO5G project funded by ESA's EGEP programme. The data used in this project were shared by the European Space Agency (ESA) with the DICA of Politecnico di Milano as part of a collaboration within the ESALab@PoliMi research framework established in 2022 between the two organizations. The ToA data were collected during a real-world measurement campaign and they cover a wide range of user environments, such as indoor areas, outdoor open sky, and outdoor obstructed scenarios. Within the test area, eleven self-made replica 5G base stations were set up. A trolley, carrying a self-made 5G receiver and a data storage unit, was moved along predefined trajectories; the trolley's accurate trajectories were determined by a total station, which provided benchmark positions. In the present work, the 5G data are processed using the least squares method, testing and comparing different strategies. Therefore, the primary goal is to evaluate algorithms for position determination of a user based on 5G observations, and to empirically assess their accuracy. The results obtained are promising, with positional accuracy ranging from decimeters to a few meters in the worst cases.

2.
Sensors (Basel) ; 16(12)2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27983707

RESUMO

The geodetic monitoring of local displacements and deformations is often needed for civil engineering structures and natural phenomena like, for example, landslides. A local permanent GNSS (Global Navigation Satellite Systems) network can be installed: receiver positions in the interest area are estimated and monitored with respect to reference stations. Usually, GNSS geodetic receivers are adopted and provide results with accuracies at the millimeter level: however, they are very expensive and the initial cost and the risk of damage and loss can discourage this approach. In this paper the accuracy and the reliability of low-cost u-blox GNSS receivers are experimentally investigated for local monitoring. Two experiments are analyzed. In the first, a baseline (65 m long) between one geodetic reference receiver and one u-blox is continuously observed for one week: the data are processed by hourly sessions and the results provide comparisons between two processing packages and a preliminary accuracy assessment. Then, a network composed of one geodetic and two u-blox receivers is set up. One u-blox is installed on a device (slide) that allows to apply controlled displacements. The geodetic and the other u-blox (at about 130 m) act as references. The experiment lasts about two weeks. The data are again processed by hourly sessions. The estimated displacements of the u-blox on the slide are analyzed and compared with the imposed displacements. All of the results are encouraging: in the first experiment the standard deviations of the residuals are smaller than 5 mm both in the horizontal and vertical; in the second, they are slightly worse but still satisfactory (5 mm in the horizontal and 13 mm in vertical) and the imposed displacements are almost correctly identified.

3.
Sci Rep ; 13(1): 15281, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714945

RESUMO

This research examines the feasibility of using synchronization signals broadcasted by currently deployed fifth generation (5G) cellular networks to determine the position of a static receiver. The main focus lies on the analysis of synchronization among the base stations of a real 5G network in Milan, Italy, as this has a major impact on the accuracy of localization based on time of arrival measurements. Understanding such properties, indeed, is fundamental to characterize the clock drifts and implement compensation strategies as well as to identify the direct communication beam. The paper shows how the clock errors, i.e., inaccurate synchronization, among 5G base stations exhibit a significant bias, which is detrimental for precise cellular positioning. By compensating the synchronization errors of devices' clocks, we demonstrate that it is in principle possible to localize a static user with an accuracy of approximately 8-10 m in non-obstructed visibility conditions, for urban and rural scenarios, using the deployed 5G network operating at 3.68 GHz and relying on broadcast signals as defined by 5G Release 15 standard. This work has been funded by the European Space Agency (ESA) Navigation Innovation and Support Program (NAVISP) Element 2 pillar which aims at improving the competitiveness of the industry of the participating States in the global Positioning, Navigation and Timing (PNT) market.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa