Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 107(3): 807-817, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30102833

RESUMO

Several attempts made so far to combine silk fibroin and polyurethane, in order to prepare scaffolds encompassing the bioactivity of the former with the elasticity of the latter, suffer from critical drawbacks concerning industrial and clinical applicability (e.g., separation of phases upon processing, use of solvents unaddressed by the European Pharmacopoeia, and use of degradable polyurethanes). Overcoming these limitations, in this study, we report the successful blending of regenerated silk fibroin with a medical-grade, non-degradable polyurethane using formic acid and dichloromethane, and the manufacturing of hybrid, semi-degradable electrospun tubular meshes with different ratios of the two materials. Physicochemical analyses demonstrated the maintenance of the characteristic features of fibroin and polyurethane upon solubilization, blending, electrospinning, and postprocessing with ethanol or methanol. Envisioning their possible application as semidegradable substrates for haemodialysis arteriovenous grafts, tubular meshes were further characterized, showing submicrometric fibrous morphologies, tunable mechanical properties, permeability before and after puncture in the same order of magnitude as commercial grafts currently used in the clinics. Results demonstrate the potential of this material for the development of hybrid, new-generation vascular grafts with disruptive potential in the field of in situ tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 807-817, 2019.


Assuntos
Materiais Biocompatíveis/química , Prótese Vascular , Fibroínas/química , Poliuretanos/química , Diálise Renal , Animais , Humanos
2.
Biomed Mater ; 14(2): 025007, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30620939

RESUMO

Clinically available alternatives of vascular access for long-term haemodialysis-currently limited to native arteriovenous fistulae and synthetic grafts-suffer from several drawbacks and are associated to high failure rates. Bioprosthetic grafts and tissue-engineered blood vessels are costly alternatives without clearly demonstrated increased performance. In situ tissue engineering could be the ideal approach to provide a vascular access that profits from the advantages of vascular grafts in the short-term (e.g. early cannulation) and of fistulae in the long-term (e.g. high success rates driven by biointegration). Hence, in this study a three-layered silk fibroin/polyurethane vascular graft was developed by electrospinning to be applied as long-term haemodialysis vascular access pursuing a 'hybrid' in situ engineering approach (i.e. based on a semi-degradable scaffold). This Silkothane® graft was characterized concerning morphology, mechanics, physical properties, blood contact and vascular cell adhesion/viability. The full three-layered graft structure, influenced by the polyurethane presence, ensured mechanical properties that are a determinant factor for the success of a vascular access (e.g. vein-graft compliance matching). The Silkothane® graft demonstrated early cannulation potential in line with self-sealing commercial synthetic arteriovenous grafts, and a degradability driven by enzymatic activity. Moreover, the fibroin-only layers and extracellular matrix-like morphology, presented by the graft, revealed to be crucial in providing a non-haemolytic character, long clotting time, and favourable adhesion of human umbilical vein endothelial cells with increasing viability after 3 and 7 d. Accordingly, the proposed approach may represent a step forward towards an in situ engineered hybrid vascular access with potentialities for vein-graft anastomosis stability, early cannulation, and biointegration.


Assuntos
Prótese Vascular , Fibroínas/química , Poliuretanos/química , Diálise Renal/instrumentação , Engenharia Tecidual/métodos , Dispositivos de Acesso Vascular , Animais , Materiais Biocompatíveis/química , Testes de Coagulação Sanguínea , Bombyx , Adesão Celular , Sobrevivência Celular , Eletroquímica , Hemólise , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Permeabilidade , Diálise Renal/métodos , Estresse Mecânico , Suturas , Resistência à Tração
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1385-1388, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060135

RESUMO

Electrical Impedance Tomography (EIT) is an image reconstruction technique applied in medicine for the electrical imaging of living tissues. In literature there is the evidence that a large resistivity variation related to the differences of the human tissues exists. As a result of this interest for the electrical characterization of the biological samples, recently the attention is also focused on the identification and characterization of the human tissue, by studying the homogeneity of its structure. An 8 electrodes needle-probe device has been developed with the intent of identifying the structural inhomogeneities under the surface layers. Ex-vivo impeditivity measurements, by placing the needle-probe in 5 different patterns of fat and lean porcine tissue, were performed, and impeditivity maps were obtained by EIDORS open source software for image reconstruction in electrical impedance. The values composing the maps have been analyzed, pointing out a good tissue discrimination, and the conformity with the real images. We conclude that this device is able to perform impeditivity maps matching to reality for position and orientation. In all the five patterns presented is possible to identify and replicate correctly the heterogeneous tissue under test. This new procedure can be helpful to the medical staff to completely characterize the biological sample, in different unclear situations.


Assuntos
Impedância Elétrica , Animais , Eletrodos , Humanos , Processamento de Imagem Assistida por Computador , Suínos , Tomografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa