RESUMO
Cyanobacteria have evolved over billions of years to adapt and survive in diverse climates. Environmentally, this presents a huge challenge because cyanobacteria can now rapidly form algae blooms that are detrimental to aquatic life. In addition, many cyanobacteria produce toxins, making them hazardous to animals and humans that they encounter. Rapid identification of cyanobacteria is essential to monitor and prevent toxic algae blooms. Here, we show for the first time how native mass spectrometry can quickly and precisely identify cyanobacteria from diverse aquatic environments. By monitoring phycobiliproteins, abundant protein complexes within cyanobacteria, simple, easy-to-understand mass spectral "fingerprints" were created that were unique to each species. Moreover, our method is 10-fold more sensitive than the current MALDI-TOF mass spectrometric methods, meaning that cyanobacteria can be monitored using this technology prior to bloom formation. Together, the data show great promise for the simultaneous detection and identification of co-existing cyanobacteria in situ.
Assuntos
Cianobactérias , Toxinas Biológicas , Animais , Eutrofização , Humanos , Espectrometria de MassasRESUMO
The Earth has distinctive convective behaviour, described by the plate tectonics model, in which lateral motion of the oceanic lithosphere of basaltic crust and peridotitic uppermost mantle is decoupled from the underlying mechanically weaker upper mantle (asthenosphere). The reason for differentiation at the lithosphere-asthenosphere boundary is currently being debated with relevant observations from geophysics (including seismology) and geochemistry (including experimental petrology). Water is thought to have an important effect on mantle rheology, either by weakening the crystal structure of olivine and pyroxenes by dilute solid solution, or by causing low-temperature partial melting. Here we present a novel experimental approach to clarify the role of water in the uppermost mantle at pressures up to 6 GPa, equivalent to a depth of 190 km. We found that for lherzolite in which a water-rich vapour is present, the temperature at which a silicate melt first appears (the vapour-saturated solidus) increases from a minimum of 970 °C at 1.5 GPa to 1,350 °C at 6 GPa. We have measured the water content in lherzolite to be approximately 180 parts per million, retained in nominally anhydrous minerals at 2.5 and 4 GPa at temperatures above and below the vapour-saturated solidus. The hydrous mineral pargasite is the main water-storage site in the uppermost mantle, and the instability of pargasite at pressures greater than 3 GPa (equivalent to more than about 90 km depth) causes a sharp drop in both the water-storage capacity and the solidus temperature of fertile upper-mantle lherzolite. The presence of interstitial melt in mantle with more than 180 parts per million of water at pressures greater than 3 GPa alters mantle rheology and defines the lithosphere-asthenosphere boundary. Modern asthenospheric mantle acting as the source for mid-oceanic ridge basalts has a water content of 50-200 parts per million (refs 3-5). We show that this matches the water content of residual nominally anhydrous minerals after incipient melting of lherzolite at the vapour-saturated solidus at high pressure.
RESUMO
Many parasitic Apicomplexa, such as Plasmodium falciparum, contain an unpigmented chloroplast remnant termed the apicoplast, which is a target for malaria treatment. However, no close relative of apicomplexans with a functional photosynthetic plastid has yet been described. Here we describe a newly cultured organism that has ultrastructural features typical for alveolates, is phylogenetically related to apicomplexans, and contains a photosynthetic plastid. The plastid is surrounded by four membranes, is pigmented by chlorophyll a, and uses the codon UGA to encode tryptophan in the psbA gene. This genetic feature has been found only in coccidian apicoplasts and various mitochondria. The UGA-Trp codon and phylogenies of plastid and nuclear ribosomal RNA genes indicate that the organism is the closest known photosynthetic relative to apicomplexan parasites and that its plastid shares an origin with the apicoplasts. The discovery of this organism provides a powerful model with which to study the evolution of parasitism in Apicomplexa.
Assuntos
Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Parasitos/classificação , Parasitos/citologia , Fotossíntese , Filogenia , Plastídeos/metabolismo , Animais , Núcleo Celular/genética , Clorofila/metabolismo , Clorofila A , Códon/genética , Células Eucarióticas/citologia , Células Eucarióticas/ultraestrutura , Parasitos/genética , Parasitos/ultraestrutura , Plasmodium falciparum/classificação , Plastídeos/genética , RNA Ribossômico/genéticaRESUMO
Macroalgae are multicellular, aquatic autotrophs that play vital roles in global climate maintenance and have diverse applications in biotechnology and eco-engineering, which are directly linked to their multicellularity phenotypes. However, their genomic diversity and the evolutionary mechanisms underlying multicellularity in these organisms remain uncharacterized. In this study, we sequenced 110 macroalgal genomes from diverse climates and phyla, and identified key genomic features that distinguish them from their microalgal relatives. Genes for cell adhesion, extracellular matrix formation, cell polarity, transport, and cell differentiation distinguish macroalgae from microalgae across all three major phyla, constituting conserved and unique gene sets supporting multicellular processes. Adhesome genes show phylum- and climate-specific expansions that may facilitate niche adaptation. Collectively, our study reveals genetic determinants of convergent and divergent evolutionary trajectories that have shaped morphological diversity in macroalgae and provides genome-wide frameworks to understand photosynthetic multicellular evolution in aquatic environments.
Assuntos
Genômica , Fotossíntese , Alga Marinha , Alga Marinha/genética , Fotossíntese/genética , Filogenia , Microalgas/genética , Microalgas/citologia , Evolução BiológicaRESUMO
A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C(16:0), C(16:1) ω7c, and C(18:1) ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes.
Assuntos
Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Hidrocarbonetos Aromáticos/metabolismo , Fitoplâncton/microbiologia , Água do Mar/microbiologia , Aerobiose , Composição de Bases , Biotransformação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Flagelos/fisiologia , Gammaproteobacteria/genética , Gammaproteobacteria/fisiologia , Dados de Sequência Molecular , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). While it has been hypothesized that the global production of siderophores by heterotrophic bacteria and some cyanobacteria constitutes the bulk of organic ligands binding iron in the ocean because stability constants of siderophores and these organic ligands are similar, and because ligand concentrations rise sharply in response to iron fertilization events, direct evidence for this proposal is lacking. This lack is due to the difficulty in characterizing these ligands due both to their extremely low concentrations and their highly heterogeneous nature. The situation for characterizing photoactive siderophores in situ is more problematic because of their expected short lifetimes in the photic zone. An alternative approach is to make use of high sensitivity molecular technology (qPCR) to search for siderophore biosynthesis genes related to the production of photoactive siderophores. In this way one can access their "biochemical potential" and utilize this information as a proxy for the presence of these siderophores in the marine environment. Here we show, using qPCR primers designed to detect biosynthetic genes for the siderophores vibrioferrin, petrobactin and aerobactin that such genes are widespread and based on their abundance, the "biochemical potential" for photoactive siderophore production is significant. Concurrently we also briefly examine the microbial biodiversity responsible for such production as a function of depth and location across a North Atlantic transect.
Assuntos
Organismos Aquáticos/genética , Bactérias/genética , Ferro/metabolismo , Processos Fotoquímicos , Sideróforos/biossíntese , Organismos Aquáticos/metabolismo , Organismos Aquáticos/efeitos da radiação , Oceano Atlântico , Bactérias/metabolismo , Bactérias/efeitos da radiação , Benzamidas/metabolismo , Biodiversidade , Citratos/metabolismo , Ácidos Hidroxâmicos/metabolismo , Processos Fotoquímicos/efeitos da radiação , Reação em Cadeia da Polimerase , Pirrolidinonas/metabolismoRESUMO
We present a genome assembly from cultivated Tetramitus jugosus (Heterolobosea; Schizopyrenida; Vahlkampfiidae). The genome sequence is 26.3 megabases in span. Most of the assembly (99.3%) is scaffolded into 52 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 49.46 kilobases in length.
RESUMO
We present a genome assembly from cultured Pycnococcus provasolii (a marine green alga; Chlorophyta; None; Pseudoscourfieldiales; Pycnococcaceae). The genome sequence is 32.2 megabases in span. Most of the assembly is scaffolded into 44 chromosomal pseudomolecules (99.67%). The mitochondrial and plastid genomes have also been assembled, and the length of the mitochondrial scaffold is 24.3 kilobases and of the plastid genome has been assembled and is 80.2 kilobases in length.
RESUMO
A strictly aerobic, halotolerant, Gram-stain-negative, rod-shaped bacterium, designated strain DG1253(T), was isolated from a laboratory culture of the marine dinoflagellate Lingulodinium polyedrum (CCAP 1121/2). The strain was able to degrade two- and three-ring polycyclic aromatic hydrocarbons. It exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain DG1253(T) was Q-8. The fatty acid profile was dominated by C(18:1)ω7c. The mean DNA G+C content of strain DG1253(T) was 63.6 ± 0.25 mol%. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (≤ 89.9% 16S rRNA gene sequence similarity) in the family Sinobacteraceae. On the basis of distinct phenotypic and genotypic characteristics, strain DG1253(T) is considered to represent a novel species of a new genus in the class Gammaproteobacteria, for which the name Algiphilus aromaticivorans gen. nov., sp. nov. is proposed. The type strain of the type species, Algiphilus aromaticivorans, is DG1253(T) (=ATCC BAA-2243(T)=DSM 24793(T)). In addition, a new family, Algiphilaceae fam. nov., is proposed to accommodate the genus Algiphilus.
Assuntos
Dinoflagellida/microbiologia , Gammaproteobacteria/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Dados de Sequência Molecular , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
An emergent property of exopolysaccharides (EPS) produced by marine bacteria is their net negative charge, predominantly conferred by their high uronic acids content. Here, we investigated the EPS produced by an algal-associated marine bacterium, Halomonas sp. strain TG39, for its capacity to sequester trace metals and mediate their bioavailability to eukaryotic phytoplankton. Metal analysis of the purified EPS revealed that it contained high levels of K, Ca, Mg and several essential trace metals, including Zn, Cu, Fe and the metalloid Si. Desorption experiments with marine sediment showed that the EPS possessed a specific binding capacity for Ca, Si, Fe, Mn, Mg and Al. Depending on the ionic conditions, Fe was the third or fourth most highly-adsorbed metal out of 27 elements analyzed. Experiments employing Fe-limited synthetic ocean seawater showed that growth of the marine diatom Thalassiosira weissflogii (axenic strain) was enhanced when incubated in the presence of either purified EPS or EPS that had been pre-exposed to marine sediment, compared to non-EPS amended controls. This growth enhancement was attributed to the EPS binding and increasing the bioavailability of key trace metal elements, such as Fe(III). Since the bacterium used in this study was originally isolated from a marine micro-alga, this work highlights the possibility that bacterial associates of eukaryotic algae could be influencing the bioavailability of Fe(III) to phytoplankton via their production of polyanionic EPS. More widely, this work reinforces the potential importance of marine bacterial EPS in trace metal biogeochemical cycling.
Assuntos
Halomonas/metabolismo , Metais/metabolismo , Fitoplâncton/metabolismo , Polissacarídeos/metabolismo , Oligoelementos/metabolismo , Sítios de Ligação , Polissacarídeos/biossínteseRESUMO
Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). We have previously shown that algal-associated heterotrophic bacteria belonging to the γ-proteobacterial Marinobacter genus release the siderophore vibrioferrin (VF). The iron-VF complex was shown to be both far more photolabile than all previously examined photolabile siderophores and to generate a photoproduct incapable of re-chelating the released iron. Thus, the photo-generated iron was shown to be highly bioavailable both to the producing bacterium and its algal partner. In exchange, we proposed that algal cells produced dissolved organic matter that helped support bacterial growth and ultimately fueled the biosynthesis of VF through a light-dependent "carbon for iron mutualism". While our knowledge of the importance of light to phototrophs is vast, there are almost no studies that examine the effects of light on microbial heterotrophs. Here, we characterize iron uptake mechanisms in "algal-associated" VF-producers. Fe uptake by a VF knock-out mutant mimics the wild-type strain and demonstrates the versatility of iron uptake mechanisms in Marinobacter VF-producers. We also show that VF-producers selectively regulate a subset of their siderophore-dependent iron uptake genes in response to light exposure. The regulation of iron uptake and transport genes by light is consistent with the light driven algal-bacterial "carbon for iron mutualism" hypothesis in the marine environment.
Assuntos
Citratos/metabolismo , Ferro/metabolismo , Luz , Marinobacter/metabolismo , Fitoplâncton/metabolismo , Pirrolidinonas/metabolismo , Sideróforos/metabolismo , Sequência de Bases , Citratos/química , Expressão Gênica , Marinobacter/classificação , Marinobacter/genética , Marinobacter/crescimento & desenvolvimento , Filogenia , Pirrolidinonas/química , Sideróforos/químicaRESUMO
Marinobacter belong to the class of Gammaproteobacteria and these motile, halophilic or halotolerent bacteria are widely distributed throughout the world's oceans having been isolated from a wide variety of marine environments. They have also been identified as members of the bacterial flora associated with other marine organisms. Here, using a combination of natural products chemistry and genomic analysis, we assess the nature of the siderophores produced by this genus and their potential relationship to phylogeny and lifestyle/ecological niche of this diverse group of organisms. Our analysis shows a wide level of diversity in siderophore based iron uptake systems among this genus with three general strategies: (1) production and utilization of native siderophores in addition to utilization of a variety of exogenous ones, (2) production and utilization of native siderophores only, (3) lack of siderophore production but utilization of exogenous ones. They all share the presence of at least one siderophore-independent iron uptake ABC transport systems of the FbpABC iron metal type and lack the ability for direct transport of ferrous iron. Siderophore production and utilization can be correlated with phylogeny and thus it forms a type of chemotaxonomic marker for this genus.
Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Marinobacter/metabolismo , Sideróforos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico/fisiologia , Genes Bacterianos , Marinobacter/classificação , Marinobacter/genética , Marinobacter/ultraestrutura , Estrutura Molecular , Filogenia , Sideróforos/química , Sideróforos/genéticaRESUMO
Marine microalgae support world fisheries production and influence climate through various mechanisms. They are also responsible for harmful blooms that adversely impact coastal ecosystems and economies. Optimal growth and survival of many bloom-forming microalgae, including climatically important dinoflagellates and coccolithophores, requires the close association of specific bacterial species, but the reasons for these associations are unknown. Here, we report that several clades of Marinobacter ubiquitously found in close association with dinoflagellates and coccolithophores produce an unusual lower-affinity dicitrate siderophore, vibrioferrin (VF). Fe-VF chelates undergo photolysis at rates that are 10-20 times higher than siderophores produced by free-living marine bacteria, and unlike the latter, the VF photoproduct has no measurable affinity for iron. While both an algal-associated bacterium and a representative dinoflagellate partner, Scrippsiella trochoidea, used iron from Fe-VF chelates in the dark, in situ photolysis of the chelates in the presence of attenuated sunlight increased bacterial iron uptake by 70% and algal uptake by >20-fold. These results suggest that the bacteria promote algal assimilation of iron by facilitating photochemical redox cycling of this critical nutrient. Also, binary culture experiments and genomic evidence suggest that the algal cells release organic molecules that are used by the bacteria for growth. Such mutualistic sharing of iron and fixed carbon has important implications toward our understanding of the close beneficial interactions between marine bacteria and phytoplankton, and the effect of these interactions on algal blooms and climate.
Assuntos
Bactérias/crescimento & desenvolvimento , Ecossistema , Eucariotos/crescimento & desenvolvimento , Ferro/metabolismo , Sideróforos/metabolismo , Alteromonadaceae/classificação , Alteromonadaceae/genética , Alteromonadaceae/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Bactérias/classificação , Bactérias/genética , Quelantes/metabolismo , Citratos/metabolismo , Dinoflagellida/crescimento & desenvolvimento , Eucariotos/metabolismo , Eutrofização , Biologia Marinha , Dados de Sequência Molecular , Oxirredução/efeitos da radiação , Fotoquímica , Fotólise , Filogenia , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Pirrolidinonas/metabolismo , RNA Ribossômico 16S/genética , Homologia de Sequência de AminoácidosRESUMO
Dimethylsulfide (DMS) is an important climatically active gas. In the sea, DMS is produced primarily by microbial metabolism of the compatible solute dimethylsulfoniopropionate. Laboratory growth of Bacteroidetes with DMS resulted in its oxidation to dimethyl sulfoxide but only in the presence of glucose. We hypothesized that electrons liberated from sulfur oxidation were used to augment biomass production.
Assuntos
Biomassa , Flavobacterium/crescimento & desenvolvimento , Flavobacterium/metabolismo , Sulfetos/metabolismo , Flavobacterium/isolamento & purificação , Oxirredução , Água do Mar/microbiologiaRESUMO
Bacteria from the genus Marinobacter are ubiquitous throughout the worlds' oceans as "opportunitrophs" capable of surviving a wide range of conditions, including colonization of surfaces of marine snow and algae. To prevent too many bacteria from occupying this ecological niche simultaneously, some sort of population dependent control must be operative. Here, we show that while Marinobacter do not produce or utilize an acylhomoserine lactone (AHL)-based quorum sensing system, "sibling" colonies of many species of Marinobacter exhibit a form of non-lethal chemical communication that prevents colonies from overrunning each other's niche space. Evidence suggests that this inhibition is the result of a loss in motility for cells at the colony interfaces. Although not the signal itself, we have identified a protein, glycerophosphoryl diester phosphodiesterase, that is enriched in the inhibition zone between the spreading colonies that may be part of the overall response.
RESUMO
Mussels belonging to the Mytilus species complex (M. edulis, ME; M. galloprovincialis, MG; and M. trossulus, MT) often occur in sympatry, facilitating introgressive hybridization. This may be further promoted by mussel aquaculture practices, with MT introgression often resulting in commercially unfavourable traits such as low meat yield and weak shells. To investigate the relationship between genotype and shell phenotype, genetic and morphological variability was quantified across depth (1 m to 7 m) along a cultivation rope at a mussel farm on the West coast of Scotland. A single nuclear marker (Me15/16) and a novel panel of 33 MT-diagnostic single nucleotide polymorphisms were used to evaluate stock structure and the extent of MT introgression across depth. Variation in shell strength, determined as the maximum compression force for shell puncture, and shell shape using geometric morphometric analysis were evaluated in relation to cultivation depth and the genetic profiles of the mussels. Overall, ME was the dominant genotype across depth, followed by ME × MG hybrids and smaller quantities of ME × MT hybrids and pure MT individuals. In parallel, we identified multiple individuals that were either predominantly homozygous or heterozygous for MT-diagnostic alleles, likely representing pure MT and first-generation ME × MT hybrids, respectively. Both the proportion of individuals carrying MT alleles and MT allele frequency declined with depth. Furthermore, MT-introgressed individuals had significantly weaker and more elongate shells than nonintrogressed individuals. This study provides detailed insights into stock structure along a cultivation rope and suggests that practical methods to assess shell strength and shape of cultivated mussels may facilitate the rapid identification of MT, limiting the impact of this commercially damaging species.
RESUMO
In this study, we investigated the yield and physicochemical properties of the high molecular weight extracellular polymeric substance (HMW-EPS) produced by Halomonas sp. strain TG39 when grown on different types and ratios of substrates. Glucose (1% w/v) and a peptone/yeast extract ratio of 5.1 (0.6% w/v final concentration) yielded an EPS fraction (HMW-glucose) exhibiting the highest anionic activity (20.5) and specific emulsifying activity (EI24 = 100%) compared to EPS produced by cells grown on mannitol, sucrose, malt extract or no carbon source. The HMW-EPS fractions were capable of binding approximately 255-464 mg of methylene blue (MB) per gram of EPS, which represents the highest reported binding of MB by a bacterial EPS. A comparative evaluation of these properties to those of commercial hydrocolloids indicated that the combined effect of protein and anionic residues of the HMW-EPS contributed to its ability to emulsify n-hexadecane. Liquid chromatography revealed the HMW-glucose EPS to be a heterogeneous polymer with a polydispersity index of 1.8. This work presents evidence of a correlation between the anionic nature and protein content of bacterial EPS with its emulsifying qualities, and identifies EPS produced by strain TG39 as a high MB-binding bacterial sorbant with potential biotechnological application.
Assuntos
Alcanos/metabolismo , Emulsificantes/farmacologia , Emulsões , Halomonas/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Fosfatos/análise , Fosfatos/farmacologia , Polissacarídeos Bacterianos/metabolismo , Proteínas/análise , Proteínas/farmacologia , Sulfatos/análise , Sulfatos/farmacologiaRESUMO
Vibrioferrin (VF) is a member of the carboxylate class of siderophores originally isolated from Vibrio parahaemolyticus, an enteropathogenic estuarine bacterium often associated with seafood-borne gastroenteritis. Recently we have also isolated this siderophore from several species of Marinobacter, which are closely associated or "symbiotic" with toxic, bloom-forming dinoflagellates such as Gymnodinium catenatum. We have measured the overall metal-ligand binding constant for iron-vibrioferrin (FeVF) as 10(24.02(5)) making vibrioferrin one of the weakest iron chelators of any known marine siderophore. FeVF is also shown to be considerably more sensitive to photolysis under relatively low illumination conditions than other photoactive siderophores leading primarily to a monodecarboxylated photoproduct that has no significant affinity for Fe(III). The consequences that these features have on bacterial-algal interactions with potential importance to understanding the origin and sustenance of harmful algal blooms are discussed.
Assuntos
Citratos/química , Compostos Férricos/química , Pirrolidinonas/química , Sítios de Ligação , Citratos/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Marinobacter/química , Modelos Químicos , Fotoquímica , Fotólise , Pirrolidinonas/isolamento & purificação , Teoria Quântica , Vibrio parahaemolyticus/químicaRESUMO
In this study, we describe the isolation and characterization of a new exopolymer that exhibits high emulsifying activities against a range of oil substrates and demonstrates a differential capacity to desorb various mono-, di-, and trivalent metal species from marine sediment under nonionic and seawater ionic-strength conditions. This polymer, PE12, was produced by a new isolate, Pseudoalteromonas sp. strain TG12 (accession number EF685033), during growth in a modified Zobell's 2216 medium amended with 1% glucose. Chemical and chromatographic analysis showed it to be a high-molecular-mass (>2,000 kDa) glycoprotein composed of carbohydrate (32.3%) and protein (8.2%). PE12 was notable in that it contained xylose as the major sugar component at unusually high levels (27.7%) not previously reported for a Pseudoalteromonas exopolymer. The polymer was shown to desorb various metal species from marine sediment-a function putatively conferred by its high content of uronic acids (28.7%). Seawater ionic strength (simulated using 0.6 M NaCl), however, caused a significant reduction in PE12's ability to desorb the sediment-adsorbed metals. These results demonstrate the importance of electrolytes, a physical parameter intrinsic of seawater, in influencing the interaction of microbial exopolymers with metal ions. In summary, PE12 may represent a new class of Pseudoalteromonas exopolymer with a potential for use in biotechnological applications as an emulsifying or metal-chelating agent. In addition to the biotechnological potential of these findings, the ecological aspects of this and related bacterial exopolymers in marine environments are also discussed.
Assuntos
Proteínas de Bactérias/metabolismo , Emulsificantes/metabolismo , Glicoproteínas/metabolismo , Metais/metabolismo , Pseudoalteromonas/metabolismo , Aminoácidos/análise , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/química , Hidrólise , Íons/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Água do Mar/microbiologia , Cloreto de Sódio/farmacologiaRESUMO
Caprella mutica (Crustacea, Amphipoda) has been widely introduced to non-native regions in the last 40 years. Its native habitat is sub-boreal northeast Asia, but in the Northern Hemisphere, it is now found on both coasts of North America, and North Atlantic coastlines of Europe. Direct sequencing of mitochondrial DNA (cytochrome c oxidase subunit I gene) was used to compare genetic variation in native and non-native populations of C. mutica. These data were used to investigate the invasion history of C. mutica and to test potential source populations in Japan. High diversity (31 haplotypes from 49 individuals), but no phylogeographical structure, was identified in four populations in the putative native range. In contrast, non-native populations showed reduced genetic diversity (7 haplotypes from 249 individuals) and informative phylogeographical structure. Grouping of C. mutica populations into native, east Pacific, and Atlantic groups explained the most among-region variation (59%). This indicates independent introduction pathways for C. mutica to the Pacific and Atlantic coasts of North America. Two dominant haplotypes were identified in eastern and western Atlantic coastal populations, indicating several dispersal routes within the Atlantic. The analysis indicated that several introductions from multiple sources were likely to be responsible for the observed global distribution of C. mutica, but the pathways were least well defined among the Atlantic populations. The four sampled populations of C. mutica in Japan could not be identified as the direct source of the non-native populations examined in this study. The high diversity within the Japan populations indicates that the native range needs to be assessed at a far greater scale, both within and among populations, to accurately assess the source of the global spread of C. mutica.