Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(18): e109, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31340014

RESUMO

Fluorescence in situ hybridization (FISH) can be used for the intracellular detection of DNA or RNA molecules. The detection of DNA sequences by DNA FISH requires the denaturation of the DNA double helix to allow the hybridization of the fluorescent probe with DNA in a single stranded form. These hybridization conditions require high temperature and low pH that can damage RNA, and therefore RNA is not typically detectable by DNA FISH. In contrast, RNA FISH does not require a denaturation step since RNA is single stranded, and therefore DNA molecules are not detectable by RNA FISH. Hence, DNA FISH and RNA FISH are mutually exclusive. In this study, we show that plasmid DNA transiently transfected into cells is readily detectable in the cytoplasm by RNA FISH without need for denaturation, shortly after transfection and for several hours. The plasmids, however, are usually not detectable in the nucleus except when the plasmids are efficiently directed into the nucleus, which may imply a more open packaging state for DNA after transfection. This detection of plasmid DNA in the cytoplasm has implications for RNA FISH experiments and opens a window to study conditions when DNA is present in the cytoplasm.


Assuntos
Citoplasma/ultraestrutura , DNA/ultraestrutura , Hibridização in Situ Fluorescente/métodos , RNA/química , Núcleo Celular/ultraestrutura , DNA/isolamento & purificação , Corantes Fluorescentes/química , Hibridização de Ácido Nucleico , Plasmídeos/genética , Sequências Repetitivas de Ácido Nucleico
2.
Life Sci Alliance ; 1(5): e201800086, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30456379

RESUMO

Imaging of transcription by quantitative fluorescence-based techniques allows the examination of gene expression kinetics in single cells. Using a cell system for the in vivo visualization of mammalian mRNA transcriptional kinetics at single-gene resolution during the cell cycle, we previously demonstrated a reduction in transcription levels after replication. This phenomenon has been described as a homeostasis mechanism that buffers mRNA transcription levels with respect to the cell cycle stage and the number of transcribing alleles. Here, we examined how transcriptional buffering enforced during S phase affects two different promoters, the cytomegalovirus promoter versus the cyclin D1 promoter, that drive the same gene body. We found that global modulation of histone modifications could completely revert the transcription down-regulation imposed during replication. Furthermore, measuring these levels of transcriptional activity in fixed and living cells showed that the transcriptional potential of the genes was significantly higher than actual transcription levels, suggesting that promoters might normally be limited from reaching their full transcriptional potential.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa