Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Glob Chang Biol ; 28(7): 2183-2201, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35075737

RESUMO

People seek reliable natural resources despite climate change. Diverse habitats and biologies stabilize productivity against disturbances like climate, prompting arguments to promote climate-resilient resources by prioritizing complex, less-modified ecosystems. These arguments hinge on the hypothesis that simplifying and degrading ecosystems will reduce resources' climate resilience, a process liable to be cryptically evolving across landscapes and human generations, but rarely documented. Here, we examined the industrial era (post 1848) of California's Central Valley, chronicling the decline of a diversified, functional portfolio of salmon habitats and life histories and investigating for empirical evidence of lost climate resilience in its fishery. Present perspectives indicate that California's dynamic, warming climate overlaid onto its truncated, degraded habitat mosaic severely constrains its salmon fishery. We indeed found substantial climate constraints on today's fishery, but this reflected a shifted ecological baseline. During the early stages of a stressor legacy that transformed the landscape and -- often consequently -- compressed salmon life history expression, the fishery diffused impacts of dry years across a greater number of fishing years and depended less on cool spring-summer transitions. The latter are important given today's salmon habitats, salmon life histories, and resource management practices, but are vanishing with climate change while year-to-year variation in fishery performance is rising. These findings give empirical weight to the idea that human legacies influence ecosystems' climate resilience across landscapes and boundaries (e.g., land/sea). They also raise the question of whether some contemporary climate effects are recent and attributable not only to increasing climate stress, but to past and present human actions that erode resilience. In general, it is thus worth considering that management approaches that prioritize complex, less-modified ecosystems may stabilize productivity despite increasing climate stress and such protective actions may be required for some ecological services to persist into uncertain climate futures.


Assuntos
Pesqueiros , Salmão , Animais , California , Mudança Climática , Ecossistema , Humanos
2.
Ecol Appl ; 29(4): e01880, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30838703

RESUMO

Ecologists are pressed to understand how climate constrains the timings of annual biological events (phenology). Climate influences on phenology are likely significant in estuarine watersheds because many watersheds provide seasonal fish nurseries where juvenile presence is synched with favorable conditions. While ecologists have long recognized that estuaries are generally important to juvenile fish, we incompletely understand the specific ecosystem dynamics that contribute to their nursery habitat value, limiting our ability to identify and protect vital habitat components. Here we examined the annual timing of juvenile coldwater fish migrating through a seasonally warm, hydrologically managed watershed. Our goal was to (1) understand how climate constrained the seasonal timing of water conditions necessary for juvenile fish to use nursery habitats and (2) inform management decisions about (a) mitigating climate-mediated stress on nursery habitat function and (b) conserving heat-constrained species in warming environments. Cool, wet winters deposited snow and cold water into mountains and reservoirs, which kept the lower watershed adequately cool for juveniles through the spring despite the region approaching its hot, dry summers. For every 1°C waters in April were colder, the juvenile fish population (1) inhabited the watershed 4-7 d longer and (2) entered marine waters, where survival is size selective, at maximum sizes 2.1 mm larger. Climate therefore appeared to constrain the nursery functions of this system by determining seasonal windows of tolerable rearing conditions, and cold water appeared to be a vital ecosystem component that promoted juvenile rearing. Fish in this system inhabit the southernmost extent of their range and already rear during the coolest part of the year, suggesting that a warming climate will truncate rather than shift their annual presence. Our findings are concerning for coldwater diadromous species in general because warming climates may constrain watershed use and diminish viability of life histories (e.g., late springtime rearing) and associated portfolio benefits over the long term. Lower watershed nurseries for coldwater fish in warming climates may be enhanced through allocating coldwater reservoir releases to prolong juvenile rearing periods downstream or restorations that facilitate colder conditions.


Assuntos
Ecossistema , Salmão , Animais , Clima , Mudança Climática , Peixes , Estações do Ano
3.
Glob Chang Biol ; 24(5): 2008-2020, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341366

RESUMO

A key step in identifying global change impacts on species and ecosystems is to quantify effects of multiple stressors. To date, the science of global change has been dominated by regional field studies, experimental manipulation, meta-analyses, conceptual models, reviews, and studies focusing on a single stressor or species over broad spatial and temporal scales. Here, we provide one of the first studies for coastal systems examining multiple stressor effects across broad scales, focused on the nursery function of 20 estuaries spanning 1,600 km of coastline, 25 years of monitoring, and seven fish and invertebrate species along the northeast Pacific coast. We hypothesized those species most estuarine dependent and negatively impacted by human activities would have lower presence and abundances in estuaries with greater anthropogenic land cover, pollution, and water flow stress. We found significant negative relationships between juveniles of two of seven species (Chinook salmon and English sole) and estuarine stressors. Chinook salmon were less likely to occur and were less abundant in estuaries with greater pollution stress. They were also less abundant in estuaries with greater flow stress, although this relationship was marginally insignificant. English sole were less abundant in estuaries with greater land cover stress. Together, we provide new empirical evidence that effects of stressors on two fish species culminate in detectable trends along the northeast Pacific coast, elevating the need for protection from pollution, land cover, and flow stressors to their habitats. Lack of response among the other five species could be related to differing resistance to specific stressors, type and precision of the stressor metrics, and limitations in catch data across estuaries and habitats. Acquiring improved measurements of impacts to species will guide future management actions, and help predict how estuarine nursery functions can be optimized given anthropogenic stressors and climate change scenarios.


Assuntos
Estuários , Linguados/fisiologia , Salmão/crescimento & desenvolvimento , Estresse Fisiológico , Distribuição Animal , Animais , Mudança Climática , Dinâmica Populacional , RNA não Traduzido , Poluição da Água
4.
J Water Health ; 13(3): 827-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26322768

RESUMO

Rising populations around coastal systems are increasing the threats to marine water quality. To assess anthropogenic fecal influence, subtidal waters were examined monthly for human- and ruminant-sourced Bacteroidales markers at 80 sites across six oceanographic basins of the Salish Sea (Washington State) from April through October, 2011. In the basins containing cities with individual populations>190,000, >50% of sites were positive for the human marker, while in the basins with high densities of dairy and cattle operations, ∼30% of sites were positive for the ruminant marker. Marker prevalence was elevated in spring (April and May) and fall (October) and reduced during summer (June through September), corresponding with seasonal precipitation. By logistic regression, the odds of human marker detection increased with percentage of adjacent catchment impervious surface, dissolved nitrate concentration, and abundance of low nucleic acid bacteria, but decreased with salinity and chlorophyll fluorescence. The odds of ruminant marker detection increased with dissolved ammonium concentration, mean flow rate for the nearest river, and adjacent shoreline length. These relationships are consistent with terrestrial to marine water flow as a transport mechanism. Thus, Bacteroidales markers traditionally used for identifying nearby sources can be used for assessing anthropogenic fecal inputs to regional marine ecosystems.


Assuntos
Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Marcadores Genéticos/genética , Poluição da Água/análise , Animais , Bovinos , Fezes/microbiologia , Humanos , Washington , Microbiologia da Água
5.
Conserv Biol ; 27(6): 1190-200, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24299085

RESUMO

Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA-listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA-listed species. In contrast, results of a model of strikes on ESA-listed species from turbine blades suggested that few ESA-listed species are likely to be killed by a commercial-scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA-listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA-listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA-listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria.


Assuntos
Organismos Aquáticos/fisiologia , Conservação dos Recursos Naturais/legislação & jurisprudência , Espécies em Perigo de Extinção , Cadeia Alimentar , Centrais Elétricas , Mudança Climática , Modelos Teóricos , Dinâmica Populacional , Medição de Risco , Estados Unidos , Movimentos da Água
6.
Biol Lett ; 6(3): 382-6, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20007162

RESUMO

A principle shared by both economists and ecologists is that a diversified portfolio spreads risk, but this idea has little empirical support in the field of population biology. We found that population growth rates (recruits per spawner) and life-history diversity as measured by variation in freshwater and ocean residency were negatively correlated across short time periods (one to two generations), but positively correlated at longer time periods, in nine Bristol Bay sockeye salmon populations. Further, the relationship between variation in growth rate and life-history diversity was consistently negative. These findings strongly suggest that life-history diversity can both increase production and buffer population fluctuations, particularly over long time periods. Our findings provide new insights into the importance of biocomplexity beyond spatio-temporal aspects of populations, and suggest that maintaining diverse life-history portfolios of populations may be crucial for their resilience to unfavourable conditions like habitat loss and climate change.


Assuntos
Salmão/fisiologia , Alaska , Migração Animal/fisiologia , Animais , Variação Genética/fisiologia , Estágios do Ciclo de Vida/fisiologia , Densidade Demográfica , Dinâmica Populacional , Vigilância da População , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia
7.
PLoS One ; 14(8): e0218558, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31412030

RESUMO

Effective conservation and restoration of estuarine wetlands require accurate maps of their historical and current extent, as well as estimated losses of these valued habitats. Existing coast-wide tidal wetland mapping does not explicitly map historical tidal wetlands that are now disconnected from the tides, which represent restoration opportunities; nor does it use water level models or high-resolution elevation data (e.g. lidar) to accurately identify current tidal wetlands. To better inform estuarine conservation and restoration, we generated new maps of current and historical tidal wetlands for the entire contiguous U.S. West Coast (Washington, Oregon, and California). The new maps are based on an Elevation-Based Estuary Extent Model (EBEEM) that combines lidar digital elevation models (DEMs) and water level models to establish the maximum historical extent of tidal wetlands, representing a major step forward in mapping accuracy for restoration planning and analysis of wetland loss. Building from this new base, we also developed an indirect method for mapping tidal wetland losses, and created maps of these losses for 55 estuaries on the West Coast (representing about 97% of historical West Coast vegetated tidal wetland area). Based on these new maps, we estimated that total historical estuary area for the West Coast is approximately 735,000 hectares (including vegetated and nonvegetated areas), and that about 85% of vegetated tidal wetlands have been lost from West Coast estuaries. Losses were highest for major river deltas. The new maps will help interested groups improve action plans for estuarine wetland habitat restoration and conservation, and will also provide a better baseline for understanding and predicting future changes with projected sea level rise.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental/métodos , Estuários , Áreas Alagadas , California , Monitoramento Ambiental/normas , Modelos Teóricos , Estados Unidos , Washington
8.
PLoS One ; 14(7): e0217711, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339895

RESUMO

Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Oncorhynchus mykiss/fisiologia , Salmão/fisiologia , Animais , California , Mudança Climática , Humanos , Oregon , Oceano Pacífico , Estações do Ano , Água do Mar , Temperatura
9.
PLoS One ; 13(11): e0205127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383778

RESUMO

While numerous studies have shown that floodplain habitat complexity can be important to fish ecology, few quantify how watershed-scale complexity influences productivity. This scale mismatch complicates population conservation and recovery strategies that evaluate recovery at regional or multi-basin scales. We used outputs from a habitat status and trends monitoring program for ten of Puget Sound's large river systems to examine whether juvenile Chinook salmon productivity relates to watershed-scale habitat complexity. We derived habitat complexity metrics that quantified wood jam densities, side and braid to main channel ratios, and node densities from a remote sensing census of Puget Sound's large river systems. Principal component analysis revealed that 91% of variance in these metrics could be explained by two principal components. These metrics revealed gradients in habitat complexity across Puget Sound which were sensitive to changes in complexity as a result of restoration actions in one watershed. Mixed effects models revealed that the second principle component term (PC2) describing habitat complexity was positively related to log transformed subyearling Chinook per spawner productivity rates from 6-18 cohorts per watershed. Total subyearling productivity (subyearlings per spawner) and fry productivity (subyearling fry per spawner) rates were best described by models that included a positive effect of habitat complexity (PC2) and negative relationships with log transformed peak flow recurrence interval, suggestive of reduced survival due to egg destruction during floods. Total subyearling productivity (subyearlings per spawner) and parr productivity (subyearling parr per spawner) rates were best described by models that included a positive effect of habitat complexity (PC2) and negative relationships with log transformed spawner density, suggestive of density dependent limits on juvenile rearing habitat. We also found that coefficient of variation for log transformed subyearling productivity and subyearling fry productivity rates declined with increasing habitat complexity, supporting the idea that habitat complexity buffers populations from annual variation in environmental conditions. Therefore, we conclude that our watershed-scale census-based approach provided habitat complexity metrics that explained some of the variability in productivity of subyearling juveniles among Chinook salmon populations. Furthermore, this approach may provide a useful means to track and evaluate aggregate effects of habitat changes on the productivity of Endangered Species Act (ESA) listed Chinook salmon populations over time.


Assuntos
Espécies em Perigo de Extinção , Reprodução/fisiologia , Salmão/fisiologia , Animais , Ecossistema , Inundações , Rios
10.
Ecol Evol ; 7(17): 6981-6995, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904777

RESUMO

While individual growth ultimately reflects the quality and quantity of food resources, intra and interspecific interactions for these resources, as well as individual size, may have dramatic impacts on growth opportunity. Out-migrating anadromous salmonids make rapid transitions between habitat types resulting in large pulses of individuals into a given location over a short period, which may have significant impact on demand for local resources. We evaluated the spatial and temporal variation in IGF-1 concentrations (a proxy for growth rate) and the relationship between size and concentration for juvenile Chinook salmon in Puget Sound, WA, USA, as a function of the relative size and abundance of both Chinook salmon and Pacific herring, a species which commonly co-occurs with salmonids in nearshore marine habitats. The abundance of Chinook salmon and Pacific herring varied substantially among the sub-basins as function of outmigration timing and spawn timing, respectively, while size varied systematically and consistently for both species. Mean IGF-1 concentrations were different among sub-basins, although patterns were not consistent through time. In general, size was positively correlated with IGF-1 concentration, although the slope of the relationship was considerably higher where Pacific herring were more abundant than Chinook salmon; specifically where smaller individual herring, relative to Chinook salmon, were more abundant. Where Pacific herring were less abundant than Chinook salmon, IGF-1 concentrations among small and large Chinook salmon were more variable and showed no consistent increase for larger individuals. The noticeable positive effect of relative Pacific herring abundance on the relationship between size and individual growth rates likely represents a shift to predation based on increased IGF-1 concentrations for individual Chinook salmon that are large enough to incorporate fish into their diet and co-occur with the highest abundances of Pacific herring.

11.
Ecol Evol ; 6(22): 8159-8173, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27878085

RESUMO

Identifying causes of structural ecosystem shifts often requires understanding trophic structure, an important determinant of energy flow in ecological communities. In coastal pelagic ecosystems worldwide, increasing jellyfish (Cnidaria and Ctenophora) at the expense of small fish has been linked to anthropogenic alteration of basal trophic pathways. However, this hypothesis remains untested in part because baseline description of fish-jellyfish trophic dynamics, and the environmental features that influence them are lacking. Using stable isotopes of carbon (δ13C) and nitrogen (δ15N), we examined spatiotemporal patterns of fish and jellyfish trophic structure in greater Puget Sound, an urbanizing fjord estuary in the NW United States. We quantified niche positions of constituent species, niche widths and trophic overlap between fish and jellyfish assemblages, and several community-level trophic diversity metrics (resource diversity, trophic length, and niche widths) of fish and jellyfish combined. We then related assemblage- and community-level measures to landscape gradients of terrestrial-marine connectivity and anthropogenic influence in adjacent catchments. Relative niche positions among species varied considerably and displayed no clear pattern except that fish generally had higher δ15N and lower δ13C relative to jellyfish, which resulted in low assemblage-level trophic overlap. Fish assemblages had larger niche widths than jellyfish in most cases and, along with whole community trophic diversity, exhibited contrasting seasonal patterns across oceanographic basins, which was positively correlated to landscape variation in terrestrial connectivity. In contrast, jellyfish niche widths were unrelated to terrestrial connectivity, but weakly negatively correlated to urban land use in adjacent catchments. Our results indicate that fish-jellyfish trophic structure is highly heterogeneous and that disparate processes may underlie the trophic ecology of these taxa; consequently, they may respond divergently to environmental change. In addition, spatiotemporal variation in ecosystem connectivity, in this case through freshwater influence, may influence trophic structure across heterogeneous landscapes.

12.
J Comp Psychol ; 116(2): 137-41, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12083606

RESUMO

Animal communication systems have become closely tuned to local habitat conditions as populations have adjusted to different long-term environmental pressures. However, many habitats are now rapidly changing because of anthropogenic modification. Maintenance of effective communication systems in greatly altered environments will depend on communicative responses on both evolutionary and ontogenetic time scales. Consideration of potential acoustic challenges caused by human-generated habitat modification has important implications for basic research and conservation biology. First, the observed signal structure of individuals in altered environments may not match the normally hypothesized call structure. Second, species that either possess little ability to adapt quickly on an evolutionary time scale or have little plasticity in their communicative systems may be unable to respond to large anthropogenic alterations in their acoustic environment.


Assuntos
Comunicação Animal , Meio Ambiente , Vocalização Animal , Animais , Percepção Auditiva , Evolução Biológica , Conservação dos Recursos Naturais , Humanos , Psicoacústica , Espectrografia do Som
13.
Theor Popul Biol ; 64(1): 1-10, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12804867

RESUMO

Theoretical studies indicate that a single population under an Allee effect will decline to extinction if reduced below a particular threshold, but the existence of multiple local populations connected by random dispersal improves persistence of the global population. An additional process that can facilitate persistence is the existence of habitat selection by dispersers. Using analytic and simulation models of population change, I found that when habitat patches exhibiting Allee effects are connected by dispersing individuals, habitat selection by these dispersers increases the likelihood that patches persist at high densities, relative to results expected by random settlement. Populations exhibiting habitat selection also attain equilibrium more quickly than randomly dispersing populations. These effects are particularly important when Allee effects are large and more than two patches exist. Integrating habitat selection into population dynamics may help address why some studies have failed to find extinction thresholds in populations, despite well-known Allee effects in many species.


Assuntos
Meio Ambiente , Dinâmica Populacional , Animais , Ecossistema , Modelos Estatísticos , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa