Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
PLoS Pathog ; 18(3): e1010396, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35358290

RESUMO

The CCR5-specific antibody Leronlimab is being investigated as a novel immunotherapy that can suppress HIV replication with minimal side effects. Here we studied the virological and immunological consequences of Leronlimab in chronically CCR5-tropic HIV-1 infected humans (n = 5) on suppressive antiretroviral therapy (ART) and in ART-naïve acutely CCR5-tropic SHIV infected rhesus macaques (n = 4). All five human participants transitioned from daily combination ART to self-administered weekly subcutaneous (SC) injections of 350 mg or 700 mg Leronlimab and to date all participants have sustained virologic suppression for over seven years. In all participants, Leronlimab fully occupied CCR5 receptors on peripheral blood CD4+ T cells and monocytes. In ART-naïve rhesus macaques acutely infected with CCR5-tropic SHIV, weekly SC injections of 50 mg/kg Leronlimab fully suppressed plasma viremia in half of the macaques. CCR5 receptor occupancy by Leronlimab occurred concomitant with rebound of CD4+ CCR5+ T-cells in peripheral blood, and full CCR5 receptor occupancy was found in multiple anatomical compartments. Our results demonstrate that weekly, self-administered Leronlimab was safe, well-tolerated, and efficacious for long-term virologic suppression and should be included in the arsenal of safe, easily administered, longer-acting antiretroviral treatments for people living with HIV-1. Trial Registration: ClinicalTrials.gov Identifiers: NCT02175680 and NCT02355184.


Assuntos
Vírus da Imunodeficiência Símia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Anti-HIV , Humanos , Macaca mulatta , Receptores CCR5
2.
J Immunol ; 207(12): 2913-2921, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810222

RESUMO

CD8+ T cells are key mediators of antiviral and antitumor immunity. The isolation and study of Ag-specific CD8+ T cells, as well as mapping of their MHC restriction, has practical importance to the study of disease and the development of therapeutics. Unfortunately, most experimental approaches are cumbersome, owing to the highly variable and donor-specific nature of MHC-bound peptide/TCR interactions. Here we present a novel system for rapid identification and characterization of Ag-specific CD8+ T cells, particularly well suited for samples with limited primary cells. Cells are stimulated ex vivo with Ag of interest, followed by live cell sorting based on surface-trapped TNF-α. We take advantage of major advances in single-cell sequencing to generate full-length sequence data from the paired TCR α- and ß-chains from these Ag-specific cells. The paired TCR chains are cloned into retroviral vectors and used to transduce donor CD8+ T cells. These TCR transductants provide a virtually unlimited experimental reagent, which can be used for further characterization, such as minimal epitope mapping or identification of MHC restriction, without depleting primary cells. We validated this system using CMV-specific CD8+ T cells from rhesus macaques, characterizing an immunodominant Mamu-A1*002:01-restricted epitope. We further demonstrated the utility of this system by mapping a novel HLA-A*68:02-restricted HIV Gag epitope from an HIV-infected donor. Collectively, these data validate a new strategy to rapidly identify novel Ags and characterize Ag-specific CD8+ T cells, with applications ranging from the study of infectious disease to immunotherapeutics and precision medicine.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Animais , Epitopos , Epitopos de Linfócito T , Macaca mulatta , Receptores de Antígenos de Linfócitos T , Fator de Necrose Tumoral alfa
3.
PLoS Pathog ; 16(3): e1008339, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163523

RESUMO

Despite the success of antiretroviral therapy (ART) to halt viral replication and slow disease progression, this treatment is not curative and there remains an urgent need to develop approaches to clear the latent HIV reservoir. The human IL-15 superagonist N-803 (formerly ALT-803) is a promising anti-cancer biologic with potent immunostimulatory properties that has been extended into the field of HIV as a potential "shock and kill" therapeutic for HIV cure. However, the ability of N-803 to reactivate latent virus and modulate anti-viral immunity in vivo under the cover of ART remains undefined. Here, we show that in ART-suppressed, simian-human immunodeficiency virus (SHIV)SF162P3-infected rhesus macaques, subcutaneous administration of N-803 activates and mobilizes both NK cells and SHIV-specific CD8+ T cells from the peripheral blood to lymph node B cell follicles, a sanctuary site for latent virus that normally excludes such effector cells. We observed minimal activation of memory CD4+ T cells and no increase in viral RNA content in lymph node resident CD4+ T cells post N-803 administration. Accordingly, we found no difference in the number or magnitude of plasma viremia timepoints between treated and untreated animals during the N-803 administration period, and no difference in the size of the viral DNA cell-associated reservoir post N-803 treatment. These results substantiate N-803 as a potent immunotherapeutic candidate capable of activating and directing effector CD8+ T and NK cells to the B cell follicle during full ART suppression, and suggest N-803 must be paired with a bona fide latency reversing agent in vivo to facilitate immune-mediated modulation of the latent viral reservoir.


Assuntos
Antirretrovirais/administração & dosagem , Linfócitos B/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Interleucina-15/antagonistas & inibidores , Células Matadoras Naturais/efeitos dos fármacos , Proteínas/administração & dosagem , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/fisiopatologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Interleucina-15/genética , Interleucina-15/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Macaca mulatta , Proteínas Recombinantes de Fusão , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/fisiologia , Latência Viral/efeitos dos fármacos
4.
J Clin Apher ; 36(1): 67-77, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32941672

RESUMO

Macaques are physiologically relevant animal models of human immunology and infectious disease that have provided key insights and advanced clinical treatment in transplantation, vaccinology, and HIV/AIDS. However, the small size of macaques is a stumbling block for studies requiring large numbers of cells, such as hematopoietic stem cells (HSCs) for transplantation, antigen-specific lymphocytes for in-depth immunological analysis, and latently-infected CD4+ T-cells for HIV cure studies. Here, we provide a detailed protocol for collection of large numbers of HSCs and T-cells from cynomolgus macaques as small as 3 kg using the Terumo Spectra Optia apheresis system, yielding an average of 5.0 × 109 total nucleated cells from mobilized animals and 1.2 × 109 total nucleated cells from nonmobilized animals per procedure. This report provides sufficient detail to adapt this apheresis technique at other institutions, which will facilitate more efficient and detailed analysis of HSCs and their progeny blood cells.


Assuntos
Remoção de Componentes Sanguíneos/métodos , Células-Tronco Hematopoéticas/citologia , Linfócitos T/citologia , Animais , Benzilaminas/farmacologia , Creatinina/sangue , Ciclamos/farmacologia , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Macaca fascicularis , Masculino
5.
J Immunol ; 200(1): 49-60, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150562

RESUMO

MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Células Matadoras Naturais/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Apresentação de Antígeno , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Células Cultivadas , Sequência Conservada/genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Macaca fascicularis , Macaca mulatta , Modelos Animais , Peptídeos/imunologia , Peptídeos/metabolismo , Antígenos HLA-E
6.
PLoS Pathog ; 12(12): e1006048, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27926931

RESUMO

Within the first three weeks of human immunodeficiency virus (HIV) infection, virus replication peaks in peripheral blood. Despite the critical, causal role of virus replication in determining transmissibility and kinetics of progression to acquired immune deficiency syndrome (AIDS), there is limited understanding of the conditions required to transform the small localized transmitted founder virus population into a large and heterogeneous systemic infection. Here we show that during the hyperacute "pre-peak" phase of simian immunodeficiency virus (SIV) infection in macaques, high levels of microbial DNA transiently translocate into peripheral blood. This, heretofore unappreciated, hyperacute-phase microbial translocation was accompanied by sustained reduction of lipopolysaccharide (LPS)-specific antibody titer, intestinal permeability, increased abundance of CD4+CCR5+ T cell targets of virus replication, and T cell activation. To test whether increasing gastrointestinal permeability to cause microbial translocation would amplify viremia, we treated two SIV-infected macaque 'elite controllers' with a short-course of dextran sulfate sodium (DSS)-stimulating a transient increase in microbial translocation and a prolonged recrudescent viremia. Altogether, our data implicates translocating microbes as amplifiers of immunodeficiency virus replication that effectively undermine the host's capacity to contain infection.


Assuntos
DNA Viral/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Viremia/virologia , Animais , Progressão da Doença , Feminino , Citometria de Fluxo , Imunofenotipagem , Inflamação/imunologia , Inflamação/virologia , Ativação Linfocitária/imunologia , Macaca fascicularis , Masculino , Reação em Cadeia da Polimerase , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Replicação Viral/imunologia
7.
J Virol ; 90(23): 10701-10714, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27654287

RESUMO

Although Nef is the viral gene product used by most simian immunodeficiency viruses to overcome restriction by tetherin, this activity was acquired by the Vpu protein of HIV-1 group M due to the absence of sequences in human tetherin that confer susceptibility to Nef. Thus, it is widely accepted that HIV-1 group M uses Vpu instead of Nef to counteract tetherin. Challenging this paradigm, we identified Nef alleles of HIV-1 group M isolates with significant activity against human tetherin. These Nef proteins promoted virus release and tetherin downmodulation from the cell surface and, in the context of vpu-deleted HIV-1 recombinants, enhanced virus replication and resistance to antibody-dependent cell-mediated cytotoxicity (ADCC). Further analysis revealed that the Vpu proteins from several of these viruses lack antitetherin activity, suggesting that under certain circumstances, HIV-1 group M Nef may acquire the ability to counteract tetherin to compensate for the loss of this function by Vpu. These observations illustrate the remarkable plasticity of HIV-1 in overcoming restriction by tetherin and challenge the prevailing view that all HIV-1 group M isolates use Vpu to counteract tetherin. IMPORTANCE Most viruses of HIV-1 group M, the main group of HIV-1 responsible for the global AIDS pandemic, use their Vpu proteins to overcome restriction by tetherin (BST-2 or CD317), which is a transmembrane protein that inhibits virus release from infected cells. Here we show that the Nef proteins of certain HIV-1 group M isolates can acquire the ability to counteract tetherin. These results challenge the current paradigm that HIV-1 group M exclusively uses Vpu to counteract tetherin and underscore the importance of tetherin antagonism for efficient viral replication.

8.
J Immunol ; 194(9): 4222-30, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25810393

RESUMO

Killer cell Ig-like receptors (KIRs) bind cognate HLA class I ligands with distinct affinities, affecting NK cell licensing and inhibition. We hypothesized that differences in KIR and HLA class I genotypes predictive of varying degrees of receptor-ligand binding affinities influence clinical outcomes in autologous hematopoietic cell transplantation (AHCT) for acute myeloid leukemia (AML). Using genomic DNA from a homogeneous cohort of 125 AML patients treated with AHCT, we performed KIR and HLA class I genotyping and found that patients with a compound KIR3DL1(+) and HLA-Bw4-80Thr(+), HLA-Bw4-80Ile(-) genotype, predictive of low-affinity interactions, had a low incidence of relapse, compared with patients with a KIR3DL1(+) and HLA-Bw4-80Ile(+) genotype, predictive of high-affinity interactions (hazard ratio [HR], 0.22; 95% confidence interval [CI], 0.06-0.78; p = 0.02). This effect was influenced by HLA-Bw4 copy number, such that relapse progressively increased with one copy of HLA-Bw4-80Ile (HR, 1.6; 95% CI, 0.84-3.1; p = 0.15) to two to three copies (HR, 3.0; 95% CI, 1.4-6.5; p = 0.005) and progressively decreased with one to two copies of HLA-Bw4-80Thr (p = 0.13). Among KIR3DL1(+) and HLA-Bw4-80Ile(+) patients, a predicted low-affinity KIR2DL2/3(+) and HLA-C1/C1 genotype was associated with lower relapse than a predicted high-affinity KIR2DL1(+) and HLA-C2/C2 genotype (HR, 0.25; 95% CI, 0.09-0.73; p = 0.01). Similarly, a KIR3DL1(+) and HLA-Bw4-80Thr(+), HLA-Bw4-80Ile(-) genotype, or lack of KIR3DL1(+) and HLA-Bw4-80Ile(+) genotype, rescued KIR2DL1(+) and HLA-C2/C2 patients from high relapse (p = 0.007). These findings support a role for NK cell graft-versus-leukemia activity modulated by NK cell receptor-ligand affinities in AHCT for AML.


Assuntos
Efeito Enxerto vs Leucemia/imunologia , Antígenos HLA-B/genética , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Receptores KIR/genética , Adulto , Idoso , Estudos de Coortes , Genótipo , Efeito Enxerto vs Leucemia/genética , Antígenos HLA-B/imunologia , Humanos , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/terapia , Pessoa de Meia-Idade , Receptores KIR/imunologia , Recidiva , Estudos Retrospectivos , Transplante Homólogo , Adulto Jovem
9.
J Virol ; 89(19): 9748-57, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178985

RESUMO

UNLABELLED: CD8 T cells play a crucial role in the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). However, the specific qualities and characteristics of an effective CD8 T cell response remain unclear. Although targeting breadth, cross-reactivity, polyfunctionality, avidity, and specificity are correlated with HIV control, further investigation is needed to determine the precise contributions of these various attributes to CD8 T cell efficacy. We developed protocols for isolating and expanding SIV-specific CD8 T cells from SIV-naive Mauritian cynomolgus macaques (MCM). These cells exhibited an effector memory phenotype, produced cytokines in response to cognate antigen, and suppressed viral replication in vitro. We further cultured cell lines specific for four SIV-derived epitopes, Nef103-111 RM9, Gag389-394 GW9, Env338-346 RF9, and Nef254-262 LT9. These cell lines were up to 94.4% pure, as determined by major histocompatibility complex (MHC) tetramer analysis. After autologous transfer into two MCM recipients, expanded CD8 T cells persisted in peripheral blood and lung tissue for at least 24 weeks and trafficked to multiple extralymphoid tissues. However, these cells did not impact the acute-phase SIV load after challenge compared to historic controls. The expansion and autologous transfer of SIV-specific T cells into naive animals provide a unique model for exploring cellular immunity and the control of SIV infection and facilitate a systematic evaluation of therapeutic adoptive transfer strategies for eradication of the latent reservoir. IMPORTANCE: CD8 T cells play a crucial role in the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Autologous adoptive transfer studies followed by SIV challenge may help define the critical elements of an effective T cell response to HIV and SIV infection. We developed protocols for isolating and expanding SIV-specific CD8 T cells from SIV-naive Mauritian cynomolgus macaques. This is an important first step toward the development of autologous transfer strategies to explore cellular immunity and potential therapeutic applications in the SIV model.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Macaca fascicularis/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Linfócitos T CD8-Positivos/virologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Citocinas/imunologia , ELISPOT , Carga Viral
10.
J Virol ; 88(22): 13231-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187550

RESUMO

UNLABELLED: Since the 1960s, simian hemorrhagic fever virus (SHFV; Nidovirales, Arteriviridae) has caused highly fatal outbreaks of viral hemorrhagic fever in captive Asian macaque colonies. However, the source(s) of these outbreaks and the natural reservoir(s) of this virus remain obscure. Here we report the identification of two novel, highly divergent simian arteriviruses related to SHFV, Mikumi yellow baboon virus 1 (MYBV-1) and Southwest baboon virus 1 (SWBV-1), in wild and captive baboons, respectively, and demonstrate the recent transmission of SWBV-1 among captive baboons. These findings extend our knowledge of the genetic and geographic diversity of the simian arteriviruses, identify baboons as a natural host of these viruses, and provide further evidence that baboons may have played a role in previous outbreaks of simian hemorrhagic fever in macaques, as has long been suspected. This knowledge should aid in the prevention of disease outbreaks in captive macaques and supports the growing body of evidence that suggests that simian arterivirus infections are common in Old World monkeys of many different species throughout Africa. IMPORTANCE: Historically, the emergence of primate viruses both in humans and in other primate species has caused devastating outbreaks of disease. One strategy for preventing the emergence of novel primate pathogens is to identify microbes with the potential for cross-species transmission in their natural state within reservoir species from which they might emerge. Here, we detail the discovery and characterization of two related simian members of the Arteriviridae family that have a history of disease emergence and host switching. Our results expand the phylogenetic and geographic range of the simian arteriviruses and define baboons as a natural host for these viruses. Our findings also identify a potential threat to captive macaque colonies by showing that simian arteriviruses are actively circulating in captive baboons.


Assuntos
Arteriviridae/classificação , Arteriviridae/isolamento & purificação , Doenças dos Macacos/virologia , Infecções por Vírus de RNA/veterinária , Animais , Animais Selvagens , Animais de Zoológico , Arteriviridae/genética , Feminino , Variação Genética , Masculino , Dados de Sequência Molecular , Papio , Filogeografia , Infecções por Vírus de RNA/virologia , RNA Viral/genética , Análise de Sequência de DNA , Topografia Médica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa