Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2319724121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141348

RESUMO

Skeletal muscle atrophy is a morbidity and mortality risk factor that happens with disuse, chronic disease, and aging. The tissue remodeling that happens during recovery from atrophy or injury involves changes in different cell types such as muscle fibers, and satellite and immune cells. Here, we show that the previously uncharacterized gene and protein Zfp697 is a damage-induced regulator of muscle remodeling. Zfp697/ZNF697 expression is transiently elevated during recovery from muscle atrophy or injury in mice and humans. Sustained Zfp697 expression in mouse muscle leads to a gene expression signature of chemokine secretion, immune cell recruitment, and extracellular matrix remodeling. Notably, although Zfp697 is expressed in several cell types in skeletal muscle, myofiber-specific Zfp697 genetic ablation in mice is sufficient to hinder the inflammatory and regenerative response to muscle injury, compromising functional recovery. We show that Zfp697 is an essential mediator of the interferon gamma response in muscle cells and that it functions primarily as an RNA-interacting protein, with a very high number of miRNA targets. This work identifies Zfp697 as an integrator of cell-cell communication necessary for tissue remodeling and regeneration.


Assuntos
Músculo Esquelético , Proteínas de Ligação a RNA , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Camundongos Knockout , Atrofia Muscular/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38995522

RESUMO

Many organs of the body are susceptible to cancer development. However, striated muscles-which include skeletal and cardiac muscles-are rarely the sites of primary cancers. Most deaths from cancer arise due to complications associated with the development of secondary metastatic tumours, for which there are few effective therapies. However, as with primary cancers, the establishment of metastatic tumours in striated muscle accounts for a disproportionately small fraction of secondary tumours, relative to the proportion of body composition. Examining why primary and metastatic cancers are comparatively rare in striated muscle presents an opportunity to better understand mechanisms that can influence cancer cell biology. To gain insights into the incidence and distribution of muscle metastases, this review presents a definitive summary of the 210 case studies of metastasis in muscle published since 2010. To examine why metastases rarely form in muscles, this review considers the mechanisms currently proposed to render muscle an inhospitable environment for cancers. The "seed and soil" hypothesis proposes that tissues' differences in susceptibility to metastatic colonization are due to differing host microenvironments that promote or suppress metastatic growth to varying degrees. As such, the "soil" within muscle may not be conducive to cancer growth. Gaining a greater understanding of the mechanisms that underpin the resistance of muscles to cancer may provide new insights into mechanisms of tumour growth and progression, and offer opportunities to leverage insights into the development of interventions with the potential to inhibit metastasis in susceptible tissues.

3.
Pharmacol Res ; 199: 107048, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145833

RESUMO

High baseline clearance of immune checkpoint inhibitors (ICIs), independent of dose or systemic exposure, is associated with cachexia and poor outcomes in cancer patients. Mechanisms linking ICI clearance, cachexia and ICI therapy failure are unknown. Here, we evaluate in four murine models and across multiple antibodies whether altered baseline catabolic clearance of administered antibody requires a tumor and/or cachexia and whether medical reversal of cachexia phenotype can alleviate altered clearance. Key findings include mild cachexia phenotype and lack of elevated pembrolizumab clearance in the MC38 tumor-bearing model. We also observed severe cachexia and decreased, instead of increased, baseline pembrolizumab clearance in the tumor-free cisplatin-induced cachexia model. Liver Fcgrt expression correlated with altered baseline catabolic clearance, though elevated clearance was still observed with antibodies having no (human IgA) or reduced (human H310Q IgG1) FcRn binding. We conclude cachexia phenotype coincides with altered antibody clearance, though tumor presence is neither sufficient nor necessary for altered clearance in immunocompetent mice. Magnitude and direction of clearance alteration correlated with hepatic Fcgrt, suggesting changes in FcRn expression and/or recycling function may be partially responsible, though factors beyond FcRn also contribute to altered clearance in cachexia.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/uso terapêutico , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fígado/metabolismo , Imunoglobulina G/metabolismo
4.
Physiol Rep ; 12(13): e16145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001580

RESUMO

The dystrophin protein has well-characterized roles in force transmission and maintaining membrane integrity during muscle contraction. Studies have reported decreased expression of dystrophin in atrophying muscles during wasting conditions, and that restoration of dystrophin can attenuate atrophy, suggesting a role in maintaining muscle mass. Phosphorylation of S3059 within the cysteine-rich region of dystrophin enhances binding between dystrophin and ß-dystroglycan, and mimicking phosphorylation at this site by site-directed mutagenesis attenuates myotube atrophy in vitro. To determine whether dystrophin phosphorylation can attenuate muscle wasting in vivo, CRISPR-Cas9 was used to generate mice with whole body mutations of S3059 to either alanine (DmdS3059A) or glutamate (DmdS3059E), to mimic a loss of, or constitutive phosphorylation of S3059, on all endogenous dystrophin isoforms, respectively. Sciatic nerve transection was performed on these mice to determine whether phosphorylation of dystrophin S3059 could attenuate denervation atrophy. At 14 days post denervation, atrophy of tibialis anterior (TA) but not gastrocnemius or soleus muscles, was partially attenuated in DmdS3059E mice relative to WT mice. Attenuation of atrophy was associated with increased expression of ß-dystroglycan in TA muscles of DmdS3059E mice. Dystrophin S3059 phosphorylation can partially attenuate denervation-induced atrophy, but may have more significant impact in less severe modes of muscle wasting.


Assuntos
Distrofina , Músculo Esquelético , Atrofia Muscular , Animais , Fosforilação , Camundongos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Distrofina/metabolismo , Distrofina/genética , Masculino , Denervação Muscular/métodos , Camundongos Endogâmicos C57BL
5.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602028

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Distrofina , Camundongos Endogâmicos BALB C , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética , Distrofina/metabolismo , Distrofina/genética , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Camundongos Endogâmicos mdx , Camundongos , Éxons/genética , Masculino , Fibrose , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa