RESUMO
It is long-established that innervation-dependent production of neurotrophic factors is required for blastema formation and epimorphic regeneration of appendages in fish and amphibians. The regenerating mouse digit tip and the human fingertip are mammalian models for epimorphic regeneration, and limb denervation in mice inhibits this response. A complicating issue of limb denervation studies in terrestrial vertebrates is that the experimental models also cause severe paralysis therefore impairing appendage use and diminishing mechanical loading of the denervated tissues. Thus, it is unclear whether the limb denervation impairs regeneration via loss of neurotrophic signaling or loss of mechanical load, or both. Herein, we developed a novel surgical procedure in which individual digits were specifically denervated without impairing ambulation and mechanical loading. We demonstrate that digit specific denervation does not inhibit but attenuates digit tip regeneration, in part due to a delay in wound healing. However, treating denervated digits with a wound dressing that enhances closure results in a partial rescue of the regeneration response. Contrary to the current understanding of mammalian epimorphic regeneration, these studies demonstrate that mouse digit tip regeneration is not peripheral nerve dependent, an observation that should inform continued mammalian regenerative medicine approaches.
Assuntos
Amputação Cirúrgica , Extremidades , Animais , Denervação , Extremidades/fisiologia , Mamíferos , Camundongos , Cicatrização/fisiologiaRESUMO
INTRODUCTION: Acute exposure to organic dust (OD) in pig barns induces intense airway inflammation with neutrophilia and hyperresponsiveness. This reaction is likely associated with increased cholinergic activity. Therefore, the involvement of cholinergic mechanisms in the reaction to acute exposure of OD was investigated in mice using the long-acting muscarinic antagonist tiotropium. METHODS: BALB/c mice received tiotropium (2-200â¯ng) intranasally on day 1 of the study. On days 2-4, mice received vehicle or OD (25⯵g) intranasally. Airway hyperresponsiveness to methacholine was assessed 24â¯h following the last OD exposure. Bronchoalveolar lavage (BAL) fluid, lung tissue and blood were collected for analyses. RESULTS: Organic dust elevated airway responsiveness to methacholine compared with controls (PBS) assessed as Newtonian resistance (1.5⯱â¯0.1 vs 0.9⯱â¯0.1â¯cmâ¯H2O x s/mL), tissue damping (12.4⯱â¯1.4 vs 8.9⯱â¯0.9â¯cmâ¯H2Oâs/mL) and tissue elastance (41.1⯱â¯5.3 vs 27.2⯱â¯2.5â¯cmâ¯H2Oâs/mL). Tiotropium (200â¯ng) decreased the Newtonian resistance and tissue damping after exposure to PBS or OD. Organic dust exposure increased inflammatory cells in BAL fluid by almost 400%, mainly due to neutrophil influx, which was unaffected by tiotropium. Organic dust increased levels of mainly Th1 mediators. Tiotropium treatment attenuated OD-induced release of IL-2, IL-4 and IL-6. CONCLUSIONS: Tiotropium decreased the OD-induced increase of specific cytokines without influencing the OD-induced increase of airway responsiveness and neutrophil infiltration into the lungs. We conclude that the cholinergic pathway contributes to the pro-inflammatory effects caused by inhalation of OD from pig barns.
Assuntos
Antagonistas Colinérgicos/farmacologia , Inflamação/tratamento farmacológico , Hipersensibilidade Respiratória/tratamento farmacológico , Brometo de Tiotrópio/farmacologia , Animais , Líquido da Lavagem Broncoalveolar , Antagonistas Colinérgicos/administração & dosagem , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Poeira , Feminino , Inflamação/etiologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/efeitos dos fármacos , Hipersensibilidade Respiratória/etiologia , Suínos , Brometo de Tiotrópio/administração & dosagemRESUMO
The profile of activation of lipid mediator (LM) pathways in asthmatic airway inflammation remains unclear. This experimental study quantified metabolite levels of ω3-, ω6- and ω9-derived polyunsaturated fatty acids in bronchoalveolar lavage fluid (BALF) after 4-weeks of repeated house dust mite (HDM) exposure in a murine (C57BL/6) asthma model. The challenge induced airway hyperresponsiveness, pulmonary eosinophil infiltration, but with low and unchanged mast cell numbers. Of the 112 screened LMs, 26 were increased between 2 to >25-fold in BALF with HDM treatment (pâ¯<â¯0.05, false discovery rateâ¯=â¯5%). While cysteinyl-leukotrienes were the most abundant metabolites at baseline, their levels did not increase after HDM treatment, whereas elevation of PGD2, LTB4 and multiple 12/15-lipoxygenase products, such as 5,15-DiHETE, 15-HEDE and 15-HEPE were observed. We conclude that this model has identified a global lipoxygenase activation signature, not linked to mast cells, but with aspects that mimic chronic allergic airway inflammation in asthma.
Assuntos
Araquidonato 12-Lipoxigenase/imunologia , Araquidonato 15-Lipoxigenase/imunologia , Araquidonato 5-Lipoxigenase/imunologia , Asma/imunologia , Mediadores da Inflamação/imunologia , Prostaglandinas/imunologia , Pyroglyphidae/imunologia , Animais , Asma/patologia , Lavagem Broncoalveolar , Modelos Animais de Doenças , Camundongos , Camundongos TransgênicosRESUMO
The link between relationship violence and aspects of neighborhood concentrated disadvantage (e.g., percent of unemployed adults, percent of families below poverty level), has been established. However, the literature examining neighborhood social processes, including informal social control and social cohesion, in relation to adolescent dating violence has shown mixed results with a limited theoretical foundation and methodology. Using a social disorganization theoretical framework, this study examined the mediating role of these neighborhood social processes in the relation between concentrated disadvantage and adolescent dating violence within an urban context. Participants included 605 adult residents in 30 census tracts and 203 adolescents from neighborhoods on the West and South sides of Chicago. Neighborhood-level concentrated disadvantage was measured via Census data, adult residents reported on neighborhood social processes, and youth reported on dating violence. Informal social control was negatively associated with dating violence, and social cohesion was positively associated with dating violence. A multilevel mediation model showed that concentrated disadvantage was related to higher levels of dating violence via lower levels of informal social control. These results extend social disorganization theory to dating violence within an urban context, while also highlighting the important role of neighborhood processes on relationship violence. Implications for research and intervention programming are discussed.
Assuntos
Violência por Parceiro Íntimo , Características de Residência , Populações Vulneráveis , Adolescente , Anomia (Social) , Censos , Chicago , Vítimas de Crime , Feminino , Humanos , Masculino , Meio Social , Adulto JovemRESUMO
BACKGROUND: Allergic asthma is a chronic inflammatory airway disease caused by exposure to airborne allergens. In order to develop novel therapies for allergic asthma, models that are relevant to human disease are needed. METHODS: Female BALB/c mice were presensitised subcutaneously with alum-adsorbed recombinant cat allergen Fel d 1, followed by intranasal challenges with cat dander extract spiked with recombinant Fel d 1 for 7 weeks. For reference, mice were presensitised and challenged with ovalbumin following the same protocol. Airway hyperresponsiveness, serum antibodies, airway inflammation and cell infiltration, and cytokines in lung tissue and bronchoalveolar lavage were measured. RESULTS: Mice presensitised with recombinant Fel d 1 and challenged with cat dander extract or presensitised and challenged with ovalbumin showed airway hyperresponsiveness in response to metacholine. Mice of the cat allergen model showed influx of neutrophils, eosinophils and lymphocytes in bronchoalveolar lavage, combined with increased levels of IL-17a and increased IL-4 mRNA expression in lung tissue. In contrast, mice sensitised and challenged with ovalbumin showed a predominant influx of eosinophils in bronchoalveolar lavage and had an increased expression of IL-5 in lung tissue. Both protocols induced features of lung tissue remodelling and allergen-specific antibody responses. CONCLUSIONS: The presented mouse model for cat allergen-induced asthma exhibits hallmarks of chronic allergic asthma, like airway hyperresponsiveness, a mixed neutrophilic/eosinophilic infiltration in bronchoalveolar lavage, expression of IL-17a and signs of remodelling in lung tissue. The model will provide a relevant platform for the development of novel treatment strategies.
Assuntos
Asma/imunologia , Modelos Animais de Doenças , Eosinófilos/imunologia , Linfócitos/imunologia , Neutrófilos/imunologia , Remodelação das Vias Aéreas , Animais , Anticorpos/sangue , Hiper-Reatividade Brônquica , Gatos , Células Cultivadas , Citocinas/metabolismo , Alérgenos Animais/imunologia , Feminino , Glicoproteínas/imunologia , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologiaRESUMO
Therapeutics targeting specific mechanisms of asthma have shown promising results in mouse models of asthma. However, these successes have not transferred well to the clinic or to the treatment of asthma sufferers. We suggest a reason for this incongruity is that mast cell-dependent responses, which may play an important role in the pathogenesis of both atopic and non-atopic asthma, are not a key component in most of the current asthma mouse models. Two reasons for this are that wild type mice have, in contrast to humans, a negligible number of mast cells localized in the smaller airways and in the parenchyma, and that only specific protocols show mast cell-dependent reactions. The development of mast cell-deficient mice and the reconstitution of mast cells within these mice have opened up the possibility to generate mouse models of asthma with a marked role of mast cells. In addition, mast cell-deficient mice engrafted with mast cells have a distribution of mast cells more similar to humans. In this article we review and highlight the mast cell-dependent and -independent responses with respect to airway hyperresponsiveness and inflammation in asthma models using mast cell-deficient and mast cell-engrafted mice.
Assuntos
Asma/fisiopatologia , Modelos Animais de Doenças , Mastócitos/metabolismo , Animais , Hiper-Reatividade Brônquica/fisiopatologia , Humanos , Inflamação/fisiopatologia , Camundongos , Especificidade da EspécieRESUMO
Background: Asthma is a chronic inflammatory disease with structural changes in the lungs defined as airway remodelling. Mast cell responses are important in asthma as they, upon activation, release mediators inducing bronchoconstriction, inflammatory cell recruitment, and often remodelling of the airways. As guinea pigs exhibit anatomical, physiological, and pharmacological features resembling human airways, including mast cell distribution and mediator release, we evaluated the effect of extracts from two common allergens, house dust mite (HDM) and cat dander (CDE), on histopathological changes and the composition of tryptase- and chymase-positive mast cells in the guinea pig lungs. Methods: Guinea pigs were exposed intranasally to HDM or CDE for 4, 8, and 12 weeks, and airway histology was examined at each time point. Hematoxylin and eosin, Picro-Sirius Red, and Periodic Acid-Schiff staining were performed to evaluate airway inflammation, collagen deposition, and mucus-producing cells. In addition, Astra blue and immunostaining against tryptase and chymase were used to visualize mast cells. Results: Repetitive administration of HDM or CDE led to the accumulation of inflammatory cells into the proximal and distal airways as well as increased airway smooth muscle mass. HDM exposure caused subepithelial collagen deposition and mucus cell hyperplasia at all three time points, whereas CDE exposure only caused these effects at 8 and 12 weeks. Both HDM and CDE induced a substantial increase in mast cells after 8 and 12 weeks of challenges. This increase was primarily due to mast cells expressing tryptase, but not chymase, thus indicating mucosal mast cells. Conclusions: We here show that exposure to HDM and CDE elicits asthma-like histopathology in guinea pigs with infiltration of inflammatory cells, airway remodelling, and accumulation of primarily mucosal mast cells. The results together encourage the use of HDM and CDE allergens for the stimulation of a clinically relevant asthma model in guinea pigs.
Assuntos
Asma , Mastócitos , Animais , Cobaias , Remodelação das Vias Aéreas , Alérgenos , Asma/etiologia , Alérgenos Animais , Modelos Animais de Doenças , Pulmão , Pyroglyphidae , TriptasesRESUMO
Diabetic neuropathy includes damage to neurons, Schwann cells and blood vessels. Rodent models of diabetes do not adequately replicate all pathological features of diabetic neuropathy, particularly Schwann cell damage. We, therefore, tested the hypothesis that combining hypertension, a risk factor for neuropathy in diabetic patients, with insulin-deficient diabetes produces a more pertinent model of peripheral neuropathy. Behavioral, physiological and structural indices of neuropathy were measured for up to 6 months in spontaneously hypertensive and age-matched normotensive rats with or without concurrent streptozotocin-induced diabetes. Hypertensive rats developed nerve ischemia, thermal hyperalgesia, nerve conduction slowing and axonal atrophy. Thinly myelinated fibers with supernumerary Schwann cells indicative of cycles of demyelination and remyelination were also identified along with reduced nerve levels of myelin basic protein. Similar disorders were noted in streptozotocin-diabetic rats, except that thinly myelinated fibers were not observed and expression of myelin basic protein was normal. Superimposing diabetes on hypertension compounded disorders of nerve blood flow, conduction slowing and axonal atrophy and increased the incidence of thinly myelinated fibers. Rats with combined insulinopenia, hyperglycemia and hypertension provide a model for diabetic neuropathy that offers an opportunity to study mechanisms of Schwann cell pathology and suggests that hypertension may contribute to the etiology of diabetic neuropathy.
Assuntos
Complicações do Diabetes/complicações , Diabetes Mellitus Experimental/complicações , Hipertensão/complicações , Doenças do Sistema Nervoso Periférico/complicações , Animais , Complicações do Diabetes/patologia , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Ensaio de Imunoadsorção Enzimática , Hipertensão/patologia , Hipertensão/fisiopatologia , Imuno-Histoquímica , Fibras Nervosas Mielinizadas/patologia , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ratos , Ratos Endogâmicos SHR , Ratos WistarRESUMO
Streptococcus pneumoniae can commonly cause otitis media, sinusitis, pneumonia, or meningitis; however, these infections less frequently can develop into invasive pneumococcal disease (IPD). Vaccination for the prevention of pneumococcal disease has significantly decreased complications from severe infections, including pneumonia, meningitis, and IPD, in patients with certain risk factors. In this case study, we describe a unique presentation of disseminated S. pneumoniae meningitis and bacteremia in a patient who initially presented with acute otitis media (AOM). Due to the patient's multiple comorbidities of obesity, tobacco use, pre-diabetes, coronary artery disease, and lack of pneumococcal vaccination, their AOM rapidly progressed to life-threatening, an invasive pneumococcal infection which was successfully treated with timely initiation of antibiotics. In addition to discussing the patient's clinical course and treatment regimen, we will review pertinent updates to the pneumococcal vaccination guidelines for high-risk patients and their efficacy in preventing severe disease.
RESUMO
Amputation of the mouse digit tip results in blastema-mediated regeneration. In this model, new bone regenerates de novo to lengthen the amputated stump bone, resulting in a functional replacement of the terminal phalangeal element along with associated non-skeletal tissues. Physiological examples of bone repair, such as distraction osteogenesis and fracture repair, are well known to require mechanical loading. However, the role of mechanical loading during mammalian digit tip regeneration is unknown. In this study, we demonstrate that reducing mechanical loading inhibits blastema formation by attenuating bone resorption and wound closure, resulting in the complete inhibition of digit regeneration. Mechanical unloading effects on wound healing and regeneration are completely reversible when mechanical loading is restored. Mechanical unloading after blastema formation results in a reduced rate of de novo bone formation, demonstrating mechanical load dependence of the bone regenerative response. Moreover, enhancing the wound-healing response of mechanically unloaded digits with the cyanoacrylate tissue adhesive Dermabond improves wound closure and partially rescues digit tip regeneration. Taken together, these results demonstrate that mammalian digit tip regeneration is mechanical load-dependent. Given that human fingertip regeneration shares many characteristics with the mouse digit tip, these results identify mechanical load as a previously unappreciated requirement for de novo bone regeneration in humans. © 2021 American Society for Bone and Mineral Research (ASBMR).
Assuntos
Osteogênese , Cicatrização , Amputação Cirúrgica , Animais , Regeneração Óssea/fisiologia , Osso e Ossos , CamundongosRESUMO
BACKGROUND: Structural regeneration of amputated appendages by blastema-mediated, epimorphic regeneration is a process whose mechanisms are beginning to be employed for inducing regeneration. While epimorphic regeneration is classically studied in non-amniote vertebrates such as salamanders, mammals also possess a limited ability for epimorphic regeneration, best exemplified by the regeneration of the distal mouse digit tip. A fundamental, but still unresolved question is whether epimorphic regeneration and blastema formation is exhaustible, similar to the finite limits of stem-cell mediated tissue regeneration. METHODS: In this study, distal mouse digits were amputated, allowed to regenerate and then repeatedly amputated. To quantify the extent and patterning of the regenerated digit, the digit bone as the most prominent regenerating element in the mouse digit was followed by in vivo µCT. RESULTS: Analyses revealed that digit regeneration is indeed progressively attenuated, beginning after the second regeneration cycle, but that the pattern is faithfully restored until the end of the fourth regeneration cycle. Surprisingly, when unamputated digits in the vicinity of repeatedly amputated digits were themselves amputated, these new amputations also exhibited a similarly attenuated regeneration response, suggesting a systemic component to the amputation injury response. CONCLUSIONS: In sum, these data suggest that epimorphic regeneration in mammals is finite and due to the exhaustion of the proliferation and differentiation capacity of the blastema cell source.
Assuntos
Amputação Cirúrgica , Cicatrização , Animais , Diferenciação Celular , Extremidades , Mamíferos , Camundongos , Cicatrização/fisiologiaRESUMO
We investigated the effect of treatment with an aldose reductase inhibitor, insulin, or select neurotrophic factors on the generation of oxidative damage in peripheral nerve. Rats were either treated with streptozotocin to induce insulin-deficient diabetes or fed with a diet containing 40% d-galactose to promote hexose metabolism by aldose reductase. Initial time course studies showed that lipid peroxidation and DNA oxidation were significantly elevated in sciatic nerve after 1 week or 2 weeks of streptozotocin-induced diabetes, respectively, and that both remained elevated after 12 weeks of diabetes. The increase in nerve lipid peroxidation was completely prevented or reversed by treatment with the aldose reductase inhibitor, ICI 222155, or by insulin, but not by the neurotrophic factors, prosaptide TX14(A) or neurotrophin-3. The increase in nerve DNA oxidation was significantly prevented by insulin treatment. In contrast, up to 16 weeks of galactose feeding did not alter nerve lipid peroxidation or protein oxidation, despite evidence of ongoing nerve conduction deficits. These observations demonstrate that nerve oxidative damage develops early after the onset of insulin-deficient diabetes and that it is not induced by increased hexose metabolism by aldose reductase per se, but rather is a downstream consequence of flux through this enzyme. Furthermore, the beneficial effect of prosaptide TX14(A) and neurotrophin-3 on nerve function and structure in diabetic rats is not due to amelioration of increased lipid peroxidation.
Assuntos
Aldeído Redutase/antagonistas & inibidores , DNA/metabolismo , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Neurônios/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , DNA/efeitos dos fármacos , Feminino , Galactitol/farmacologia , Galactose/metabolismo , Galactose/toxicidade , Hidrazonas/farmacologia , Malondialdeído/metabolismo , Neurônios/efeitos dos fármacos , Nitroparafinas/farmacologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Sulfonas/farmacologiaRESUMO
Asthma is a chronic inflammatory disease characterized by bronchial hyperresponsiveness, mucus overproduction and airway remodeling. Notably, we have recently demonstrated that insulin-like growth factor 1 receptor (IGF1R) deficiency in mice attenuates airway hyperresponsiveness and mucus secretion after chronic house dust mite (HDM) exposure. On this basis, inbred C57BL/6 and Igf1r-deficient mice were given HDM extract to study the acute inflammatory profile and implication of Igf1r in acute asthma pathobiology. Additionally, Igf1r-deficiency was therapeutically induced in mice to evaluate the resolution of HDM-induced inflammation. Acute HDM exposure in inbred C57BL/6 mice led to a progressive increase in inflammation, airway remodeling and associated molecular indicators. Preventively-induced Igf1r-deficiency showed reduced neutrophil and eosinophil numbers in BALF and bone marrow, a significant reduction of airway remodeling and decreased levels of related markers. In addition, therapeutic targeting of Igf1r promoted the resolution of HDM-induced-inflammation. Our results demonstrate for the first time that Igf1r is important in acute asthma pathobiology and resolution of HDM-induced inflammation. Thus, IGF1R is suggested to be a promising candidate for future therapeutic approaches for the treatment and prevention of asthma.
Assuntos
Asma/terapia , Modelos Animais de Doenças , Marcação de Genes , Inflamação/terapia , Receptor IGF Tipo 1/genética , Doença Aguda , Animais , Células da Medula Óssea , Líquido da Lavagem Broncoalveolar , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Interleukin (IL)-26 is released in response to bacterial endotoxin (LPS) in the bronchoalveolar space of humans in vivo and it may potentiate neutrophil chemotaxis by enhanced IL-26 receptor stimulation. However, the effects of extracellular IL-26 protein on the innate immune response in the lungs in vivo remain unknown. Here, we characterized these effects of IL-26 on a wide range of aspects of the innate immune response to LPS in different compartments of the lungs in vivo over time. We administrated recombinant human (rh) IL-26 protein in the bronchoalveolar space using intranasal instillation in a mouse in vivo model, with and without prior instillation of LPS. We verified gene expression of the IL-26 receptor complex in mouse lungs and observed that, after instillation of LPS, rhIL-26 increases the phosphorylation of STAT3, a signaling molecule of the IL-26 receptor complex. We also observed that rhIL-26 exerted additional stimulatory and inhibitory actions that are compartment- and time-dependent, resulting in alterations of cytokines, proteinases, tissue inflammation and the accumulation of innate effector cells. Without the prior instillation of LPS, rhIL-26 exerted time-dependent effects on total gelatinase activity but few other effects. Most important, after instillation of LPS, rhIL-26 cleared inflammatory cells from local tissue and increased the accumulation of innate effector cells in the bronchoalveolar space. Tentatively, rhIL-26 may facilitate the innate immune response towards the bronchoalveolar space in vivo and represents a potential target for therapy in lung disorders involving the innate immune response.
Assuntos
Brônquios/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Interleucinas/farmacologia , Lipopolissacarídeos/farmacologia , Alvéolos Pulmonares/efeitos dos fármacos , Animais , Brônquios/imunologia , Líquido da Lavagem Broncoalveolar , Citocinas/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo , Fosforilação , Alvéolos Pulmonares/imunologia , RNA Mensageiro/genética , Proteínas Recombinantes/farmacologiaRESUMO
BACE1-mediated cleavage of APP is a pivotal step in the production of the Alzheimer related Aß peptide and inhibitors of BACE1 are currently in clinical development for the treatment of Alzheimer disease (AD). While processing and trafficking of APP has been extensively studied in non-neuronal cells, the fate of APP at neuronal synapses and in response to reduced BACE1 activity has not been fully elucidated. Here we examined the consequence of reduced BACE1 activity on endogenous synaptic APP by monitoring N- and C-terminal APP epitopes by immunocytochemistry. In control rodent primary hippocampal neuron cultures, labeling with antibodies directed to N-terminal APP epitopes showed a significant overlap with synaptic vesicle markers (SV2 or synaptotagmin). In contrast, labeling with antibodies directed to C-terminal epitopes of APP showed only a limited overlap with these proteins. In neurons derived from BACE1-deficient mice, and in control neurons treated with a BACE1 inhibitor, both the N-terminal and the C-terminal APP labeling overlapped significantly with synaptic vesicle markers. Moreover, BACE1 inhibition increased the proximity between the APP C-terminus and SV2 as shown by a proximity ligation assay. These results, together with biochemical observations, indicate that BACE1 can regulate the levels of full-length APP at neuronal synapses.
Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Neurônios/metabolismo , Pirimidinas/farmacologia , Ratos Sprague-Dawley , Sinapses/metabolismoRESUMO
Activation of protease-activated receptors (PARs) in non-neural tissue results in prostaglandin production. Because PARs are found in the spinal cord and increased prostaglandin release in the spinal cord causes thermal hyperalgesia, we hypothesized that activation of these spinal PARs would stimulate prostaglandin production and cause a cyclooxygenase-dependent thermal hyperalgesia. PARs were activated using either thrombin or peptide agonists derived from the four PAR subtypes, delivered to the lumbar spinal cord. Dialysis experiments were conducted in conscious, unrestrained rats using loop microdialysis probes placed in the lumbar intrathecal space. Intrathecal thrombin stimulated release of prostaglandin E (PGE)(2) but not aspartate or glutamate. Intrathecal delivery of the PAR 1-derived peptide SFLLRN-NH(2) and the PAR 2-derived peptide SLIGRL both stimulated PGE(2) release; PAR 3-derived TFRGAP and PAR 4-derived GYPGQV were inactive. Intrathecal thrombin had no effect upon formalin-induced flinching or tactile sensitivity but resulted in a thermal hyperalgesia. Intrathecal SFLLRN-NH(2) and SLIGRL both produced thermal hyperalgesia. Consistent with their effects on spinal PGE(2), hyperalgesia from these peptides was blocked by pretreatment with the cyclooxygenase inhibitor ibuprofen. SLIGRL-induced hyperalgesia was also blocked by the selective inhibitors SC 58,560 [5-(4-fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-3-(trifluoromethyl)-1H-pyrazole; cyclooxygenase (COX) 1] and SC 58,125 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole; COX 2]. These data indicate that activation of spinal PAR 2 and possibly PAR 1 results in the stimulation of the spinal cyclooxygenase cascade and a prostaglandin-dependent thermal hyperalgesia.
Assuntos
Hiperalgesia/enzimologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptores Ativados por Proteinase/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Dinoprostona/metabolismo , Hiperalgesia/metabolismo , Isoenzimas/metabolismo , Masculino , Proteínas de Membrana , Microdiálise , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Ativados por Proteinase/fisiologia , Medula Espinal/enzimologia , Trombina/farmacologiaRESUMO
Sturgeons are primitive bony fishes and their hearts have structural features found in other primitive fishes. Sturgeons have a pericardioperitoneal canal (PPC), a one-way conduit into the peritoneum. A PPC also occurs in elasmobranchs (sharks and rays) and studies with that group demonstrate that pericardial pressure and pericardial fluid loss via the PPC affect stroke volume. A study of white sturgeon (Acipenser transmontanus) heart function was conducted to test for a comparable PPC and pericardial effects. White sturgeon-elasmobranch heart-function similarities include biphasic ventricular filling, a comparable operational pericardial pressure (-0.03 kPa), and a strongly negative pressure (-0.2 to -0.6 kPa) with complete pericardial fluid withdrawal. Differences include the white sturgeon's relatively smaller atrium and ventricle but a larger conus arteriosus. Although white sturgeon heart size is also smaller, its pericardial volume is disproportionately less (2.4 to 2.7 vs. 3.5 to 5.4 ml kg(-1) in elasmobranchs), meaning it has less scope for increasing stroke volume upon PPC fluid release. These differences may reflect the phylogenetic progression from the less complex operation of the elasmobranch heart, which lacks sympathetic innervation and has a mechanically mediated (PPC) stroke volume, to the condition in the more derived bony fishes which have sympathetic and parasympathetic regulation of both stroke volume and heart rate.