Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38644994

RESUMO

It is estimated that chronic neuropathic pain conditions exhibit up to 10% prevalence in the general population, with increased incidence in females. However, nonsteroidal inflammatory drugs (NSAIDs) are ineffective, and currently indicated prescription treatments such as opioids, anticonvulsants, and antidepressants provide only limited therapeutic benefit. In the current work, we extended previous studies in male rats utilizing a paradigm of central Toll-like receptor 4 (TLR4)-dependent, NSAID-unresponsive neuropathic-like pain hypersensitivity to male and female C57BL/6N mice, uncovering an unexpected hyperalgesic phenotype in female mice following intrathecal (IT) LPS. In contrast to previous reports in female C57BL/6J mice, female C57BL/6N mice displayed tactile and cold allodynia, grip force deficits, and locomotor hyperactivity in response to IT LPS. Congruent with our previous observations in male rats, systemic inhibition of 12/15-Lipoxygenases (12/15-LOX) in female B6N mice with selective inhibitors - ML355 (targeting 12-LOX-p) and ML351 (targeting 15-LOX-1) - completely reversed allodynia and grip force deficits. We demonstrate here that 12/15-LOX enzymes also are expressed in mouse spinal cord and that 12/15-LOX metabolites produce tactile allodynia when administered spinally (IT) or peripherally (intraplantar in the paw, IPLT) in a hyperalgesic priming model, similar to others observations with the cyclooxygenase (COX) metabolite Prostaglandin E 2 (PGE 2 ). Surprisingly, we did not detect hyperalgesic priming following IT administration of LPS, indicating that this phenomenon likely requires peripheral activation of nociceptors. Collectively, these data suggest that 12/15-LOX enzymes contribute to neuropathic-like pain hypersensitivity in rodents, with potential translatability as druggable targets across sexes and species using multiple reflexive and non-reflexive outcome measures.

2.
Neuroscience ; 169(1): 475-87, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20359526

RESUMO

Several groups maintain that morphine tolerance and dependence correlate with increased activity of protein kinases ERK1/2 and P38 MAPK and PKC as well as elevated levels of the neuropeptides dynorphin (DYN), substance P (sP), and calcitonin gene-related peptide (CGRP) in spinal cord dorsal horn (SCDH). They demonstrate that tolerance and dependence can be prevented, and sometimes reversed, by constitutive genetic deletion or pharmacological inhibition of these factors. Recently, we showed that mice with a constitutive deletion of the GluR5 subunit of kainate receptors (GluR5 KO) are not different from wild type (WT) littermates with respect to baseline nociceptive thresholds as well as acute morphine antinociception, morphine physical dependence and conditioned place preference. However, unlike WT, GluR5 KO mice do not develop antinociceptive tolerance following systemic morphine administration. In this report, we examined levels of these mediators in SCDH of WT and GluR5 KO mice following subcutaneous implantation of placebo or morphine pellets. Surprisingly, spinal DYN and CGRP, along with phosphorylated ERK2 (pERK2), P38 (pP38) and PKCgamma (pPKCgamma) are elevated by deletion of GluR5. Additionally, chronic systemic morphine administration increased spinal pERK2, pP38 and pPKCgamma levels in both tolerant WT and non-tolerant GluR5 KO mice. In contrast, while morphine increased spinal DYN and CGRP in WT mice, DYN remained unchanged and CGRP was reduced in GluR5 KO mice. These observations suggest that spinal ERK2, P38 and PKCgamma are likely involved in multiple adaptive responses following systemic morphine administration, whereas DYN and CGRP may contribute selectively to the development of antinociceptive tolerance.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Dinorfinas/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Morfina/farmacologia , Entorpecentes/farmacologia , Limiar da Dor/fisiologia , Dor/fisiopatologia , Células do Corno Posterior/metabolismo , Proteína Quinase C/fisiologia , Receptores de Ácido Caínico/deficiência , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Peptídeo Relacionado com Gene de Calcitonina/genética , Implantes de Medicamento , Tolerância a Medicamentos/fisiologia , Dinorfinas/biossíntese , Dinorfinas/genética , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/genética , Morfina/administração & dosagem , Morfina/uso terapêutico , Morfina/toxicidade , Dependência de Morfina/fisiopatologia , Entorpecentes/administração & dosagem , Entorpecentes/uso terapêutico , Entorpecentes/toxicidade , Dor/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Fosforilação , Células do Corno Posterior/efeitos dos fármacos , Proteína Quinase C/biossíntese , Proteína Quinase C/genética , Processamento de Proteína Pós-Traducional , Receptores de Ácido Caínico/genética , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa