RESUMO
This review will cover a number of physical and chemical pretreatment methods for cellulosic substrates which enhance their hydrolysis by cellulase or consumption by microorganisms. While the emphasis is on the literature of the last two years, some earlier work is cited which has influenced the work in the pretreatment field. In order to interpret the effects of a pretreatment method, emphasis in the past has been on crystallinity index (CI) and lignin content. Although these parameters happen often to correlate with the rate or extent of hydrolysis, it is suggested that a more basic parameter is the pore size distribution of the wet substrate and the associated surface area available to the cellulase that is the major factor in determining the effectiveness of a pretreatment method.
RESUMO
The abilities of lignin peroxidase (LIP) and manganese peroxidase (MNP) from Phanerochaete chrysosporium to degrade an insoluble hardwood lignin in vitro in aqueous media were tested. Neither LIP nor MNP appreciably changed the mass or lignin content, although both produced small amounts of unique solubilized lignin fragments. Treatment with both LIP and MNP, however, decreased the mass by 11%, decreased the lignin content by 5.1% (4.2% as total weight), and solubilized unique lignin-derived molecules. These results suggest that LIP and MNP synergistically degrade high molecular weight insoluble lignin, but singly, neither enzyme is sufficient to effect lignin degradation.
RESUMO
The cellulase activity in cell-free broths from the thermophilic, ethanol-producing anaerobic bacterium Clostridium thermocellum is examined on both dilute-acid-pretreated mixed hardwood (90% maple, 10% birch) and Avicel. Experiments were conducted in vitro in order to distinguish properties of the cellulase from properties of the organism and to evaluate the effectiveness of C. thermocellum cellulase in the hydrolysis of a naturally occurring, lignin-containing substrate. The results obtained establish that essentially quantitative hydrolysis of cellulose from pretreated mixed hardwood is possible using this enzyme system. Pretreatment with 1% H(2)SO(4) and a 9-s residence time at 220, 210, 200, and 180 degrees C allowed yields after enzymatic hydrolysis (percentage of glucan solubilized/ glucan potentially solubilized) of 97.8, 86.1, 82.0, and 34.6%, respectively. Enzymatic hydrolysis of mixed hardwood with no pretreatment resulted in a yield of 10.1%. Hydrolysis yields of >95% were obtained from approximately 0.6 g/L mixed hardwood pretreated at 220 degrees C in 7 h at broth strengths of 60 and 80% (v/v) and in approximately 48 h with 33% broth. Hydrolysis of pretreated mixed hardwood is compared to hydrolysis of Avicel, a pure microcrystalline cellulose studied previously. The initial rate of Avicel hydrolysis saturates with respect to enzyme, whereas the initial rate of hydrolysis of pretreated wood is proportional to the amount of enzyme present. Initial hydrolysis rates for pretreated wood and Avicel at 0.6 g/L are greater for wood at low broth dilutions (1.25: 1 to 5 :1) by up to 2.7-fold and greater for Avicel at high broth dilutions (5 : 1 to 50 : 1) by up to 4.3-fold. Maximum rates of hydrolysis are achieved at <2 g substrate/L for both pretreated wood and Avicel. The substrate concentration at one-half the maximum observed rate for C. thermocellum broths is smaller for pretreated mixed hardwood than for Avicel and decreases with increasing broth dilution for both substrates. An initial activity per volume broth of approximately 11 mumol soluble glucose equivalent produced/L broth/min is observed for mixed hardwood pretreated at 220 degrees C and for Avicel at high broth dilutions; the initial activity per volume broth for Avicel is lower at low broth dilutions. The results indicate that pretreated wood is hydrolyzed at rates comparable to Avicel under many conditions and at rates significantly faster than Avicel under several conditions.
RESUMO
Removal of hemicellulose by acid pretreatment in a flow reactor followed by enzymatic hydrolysis of the neutralized slurry has resulted in glucose yields as high as 95% for mixed hardwood. For white pine, however, the maximum glucose yield is 65%. Although pine has a higher extractives content, removal of the extractives prior to enzymatic hydrolysis does not increases the glucose yield. Pore size measurements reveal that the increase in pore volume, in the size range of the cellulase molecule, following pretreatment for pine is only about one-half the value obtained with mixed hardwood. This suggests that pore volume is an important determinant of substrate-enzyme reactivity.
RESUMO
Two different types of extracellular protease activity were identified in the culture fluid of Phanerochaete chrysosporium wild-type BKM-F grown in submerged batch culture on N-limited media. The first activity, which appears to be inherent to the active growth phase, displayed a maximum on day 2 and decreased to a very low level on day 4. The second activity, which appeared at day 8 following the peak of ligninase activity, seems to be characteristic of late secondary metabolism and is stimulated by carbon starvation. Cultures started with half the amount of glucose of other cultures showed a remarkably earlier development of secondary activity. In contrast, the fed-batch addition of glucose started when ligninase activity was at a maximum (day 6) completely repressed secondary protease activity and enhanced ligninase production. The addition of exogenous veratryl alcohol increased the level of secondary protease activity, whereas the oxygen supply pattern significantly affected both the time course and the level of overall proteolytic activity. The addition of phenylmethylsulfonyl fluoride to growing cultures (0, 1, or 6 days) diminished overall protease activity, while it significantly enhanced ligninase activity. In all cases, the time courses of protease and ligninase activities were negatively correlated, indicating that protease activity promotes the decline of ligninase activity in batch culture.
RESUMO
Fermentation of dilute-acid-pretreated mixed hardwood and Avicel by Clostridium thermocellum was compared in batch and continuous cultures. Maximum specific growth rates per hour obtained on cellulosic substrates were 0.1 in batch culture and >0.13 in continuous culture. Cell yields (grams of cells per gram of substrate) in batch culture were 0.17 for pretreated wood and 0.15 for Avicel. Ethanol and acetate were the main products observed under all conditions. Ethanol:acetate ratios (in grams) were approximately 1.8:1 in batch culture and generally slightly less than 1:1 in continuous culture. Utilization of cellulosic substrates was essentially complete in batch culture. A prolonged lag phase was initially observed in batch culture on pretreated wood; the length of the lag phase could be shortened by addition of cell-free spent medium. In continuous culture with approximately 5 g of glucose equivalent per liter in the feed, substrate conversion relative to theoretical ranged from 0.86 at a dilution rate (D) of 0.05/h to 0.48 at a D of 0.167/h for Avicel and from 0.75 at a D of 0.05/h to 0.43 at a D of 0.11/h for pretreated wood. At feed concentrations of <4.5 g of glucose equivalent per liter, conversion of pretreated wood was 80 to 90% at D = 0.083/h. Lower conversion was obtained at higher feed substrate concentrations, consistent with a limiting factor other than cellulose. Free Avicelase activities of 12 to 84 mU/ml were observed, with activity increasing in this order: batch cellobiose, batch pretreated wood < batch Avicel, continuous pretreated wood < continuous Avicel. Free cellulase activity was higher at increasing extents of substrate utilization for both pretreated wood and Avicel under all conditions tested. The results indicate that fermentation parameters, with the exception of free cellulase activity, are essentially the same for pretreated mixed hardwood and Avicel under a variety of conditions. Hydrolysis yields obtained with C. thermocellum cellulase acting either in vitro or in vivo were comparable to those previously reported for Trichoderma reesei on the same substrates.
RESUMO
When subjected to nitrogen limitation, the wood-degrading fungus Phanerochaete chrysosporium produces two groups of secondary metabolic, extracellular isoenzymes that depolymerize lignin in wood: lignin peroxidases and manganese peroxidases. We have shown earlier the turnover in activity of the lignin peroxidases to be due in part to extracellular proteolytic activity. This paper reports the electrophoretic characterization of two sets of acidic extracellular proteases produced by submerged cultures of P. chrysosporium. The protease activity seen on day 2 of incubation, during primary growth when nitrogen levels are not known to be limiting, consisted of at least six proteolytic bands ranging in size from 82 to 22 kDa. The activity of this primary protease was strongly reduced in the presence of SDS. Following the day 2, when nitrogen levels are known to become limiting and cultures become ligninolytic, the main protease activity (secondary protease) consisted of a major proteolytic band of 76 kDa and a minor band of 25 kDa. The major and minor secondary protease activities were inhibited by phenylmethyl-sulfonyl fluoride and pepstatin A, respectively. When cultures were grown in the presence of excess nitrogen (non-ligninolytic condition), the primary protease remained the principal protease throughout the culture period. These results identify and characterize a specific proteolytic activity associated with conditions that promote lignin degradation.
Assuntos
Basidiomycota/enzimologia , Endopeptidases/metabolismo , Nitrogênio/farmacologia , Basidiomycota/efeitos dos fármacos , Biodegradação Ambiental , Endopeptidases/química , Endopeptidases/efeitos dos fármacos , Endopeptidases/isolamento & purificação , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Peroxidases/metabolismo , Inibidores de Proteases/farmacologia , TemperaturaRESUMO
The lignin peroxidases (LIP) and manganese peroxidases (MNP) of Phanerochaete chrysosporium catalyze a wide range of lignin depolymerization reactions with lignin models and synthetic lignins in solution. However, their ability to degrade insoluble natural lignin in aqueous media has not been demonstrated. Insoluble isolated poplar lignin similar to natural lignin was treated in vitro in aqueous media for 12 h with LIP, MNP, and both. Treatment with MNP alone slightly increased the solid mass and produced measurable amounts of lignin-derived 2,6-dimethoxyhydroquinone and 2-methoxyhydroquinone but did not appreciably decrease the total lignin content. Treatment with LIP alone did not decrease the mass but produced measurable amounts of lignin-derived p-hydroxybenzoic acid and slightly decreased the lignin content. Finally, treatment with LIP and MNP together decreased the solid mass by 11%, decreased the lignin content by 5%, and released low-concentration compounds with mass spectra containing the typical lignin-derived electron-impact fragments of mass 107, 137, 151, 167, and 181. These results suggest that MNP increases the effectiveness of LIP-mediated lignin degradation.
Assuntos
Lignina/química , Lignina/metabolismo , Peroxidases/metabolismo , Phanerochaete/enzimologia , Biodegradação Ambiental , Reatores Biológicos , Diálise/métodos , Matriz Extracelular/enzimologia , Cromatografia Gasosa-Espectrometria de Massas , Processamento de Imagem Assistida por Computador , Peroxidases/química , Software , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , ÁguaRESUMO
The decline of lignin peroxidase (LiP) activity observed after day 6 in cultures of Phanerochaete chrysosporium was found to be correlated with the appearance of idiophasic extracellular protease activity. Daily addition of glucose started on day 6 resulted in low protease levels and in turn in stable LiP levels. Addition of cycloheximide to day 6 cultures resulted in virtually no change of LiP activity and extracellular protein and negligible levels of protease activity, indicating that this protease is synthesized de novo. LiP activity was found to be stable upon removal of the fungal pellets on day 6 and incubation of the extracellular fluid alone. An almost complete disappearance of LiP activity and LiP proteins and high levels of protease activity were observed upon incubation of 6-day extracellular fluid in the presence of fungal pellets. Moreover, incubation of crude or purified LiP isoenzymes with protease-rich extracellular fluid of day 11 or 11-day cell extracts resulted in a marked loss of activity. In contrast, incubation of crude LiP with boiled and clarified extracellular fluid of day 11 cultures resulted in virtually no loss of activity. These results indicate that protease-mediated degradation of LiP proteins is a major cause for the decay of LiP activity during late secondary metabolism in cultures of P. chrysosporium.