Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838751

RESUMO

Herbal drugs have been attracting much scientific interest in the last few decades and nowadays, phytoconstituents-based research is in progress to disclose their unidentified medicinal potential. Daidzein (DAI) is the natural phytoestrogen isoflavone derived primarily from leguminous plants, such as the soybean and mung bean, and its IUPAC name is 4',7-dihydroxyisoflavone. This compound has received great attention as a fascinating pharmacophore with remarkable potential for the therapeutic management of several diseases. Certain pharmacokinetic properties of DAI such as less aqueous solubility, low permeability, and poor bioavailability are major obstacles restricting the therapeutic applications. In this review, distinctive physicochemical characteristics and pharmacokinetics of DAI has been elucidated. The pharmacological applications in treatment of several disorders like oxidative stress, cancer, obesity, cardiovascular, neuroprotective, diabetes, ovariectomy, anxiety, and inflammation with their mechanism of action are explained. Furthermore, this review article comprehensively focuses to provide up-to-date information about nanotechnology-based formulations which have been investigated for DAI in preceding years which includes polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, polymer-lipid nanoparticles, nanocomplexes, polymeric micelles, nanoemulsion, nanosuspension, liposomes, and self-microemulsifying drug delivery systems.


Assuntos
Isoflavonas , Nanopartículas , Sistemas de Liberação de Medicamentos , Nanotecnologia , Nanopartículas/química , Micelas , Polímeros/química
2.
Pharm Nanotechnol ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38317469

RESUMO

For centuries, people have used herbal medicine to treat a diversity of health complications and as a natural substance, they have a favourable effect on our health. Herbal ingredients can be utilized as lead molecules in the innovation and development of a new drug. Flavonoids are a class of chemical compounds with diverse phenolic structures, and they are found in a wide variety of foods, including fruits, vegetables, cereals, bark, roots, stems, flowers, tea, and wine. Quercetin is the most prevalent polyphenolic bioflavonoid or flavonoid. Quercetin is found in many food products and has demonstrated a wide range of pharmacological activities, including the treatment of allergies, ocular diseases, metabolic ailments, inflammatory illnesses, cardiovascular ailments and arthritis. Quercetin has attracted interest as an emerging pharmacophore with the potential to significantly advance research and the development of novel therapeutic medicines for a variety of diseases. Despite having a huge therapeutic potential, these flavonoids have unfavourable pharmacokinetic characteristics, low bioavailability, and poor solubility, limiting their application in therapeutics. The objective of the current study is to present a new update on the major therapeutic uses of quercetin and other types of nanocarriers that contain quercetin to treat various ailments.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37921124

RESUMO

Psoriasis is an autoimmune systemic chronic inflammatory disease that exhibits characteristic detrimental effects on the skin, often leading to infections or comorbid conditions. The multifaceted nature of psoriasis has made it very challenging to treat, especially with current chemotherapy options. Therefore, it is essential to consider phytoconstituents as novel alternatives. However, despite demonstrating higher anti-inflammatory, anti-psoriasis, and immunomodulatory potential, their clinical usage is hindered due to their poor physicochemical properties. To address these drawbacks, nanoparticulate drug delivery systems have been developed, helping to achieve better permeation of phytoconstituents through topical administration. This has breathed new life into traditional systems of medicine, particularly in the context of treating psoriasis. In this current review, we present a detailed, comprehensive, and up-to-date analysis of the literature, which will contribute to affirming the clinical role of phyto-nano interventions against psoriasis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa