Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Reprod Immunol ; 158: 103979, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348446

RESUMO

This study investigated if in vitro supplementation of vitexin could mitigate the adverse effects of hyperthermia on buffalo mammary epithelial cells (BuMECs). Immortalized BuMECs were divided into seven groups (n = 3): (1) a negative control group at 37 °C; (2) BuMECs exposed to heat stress as a positive control at 42 °C for 1 h; (3-7) heat stressed BuMECs pre-treated or co-treated with different concentrations of vitexin (5 µM, 10 µM, 20 µM, 50 µM, and 100 µM), respectively. Hyperthermia was induced by exposing the cells to 42 ºC for 1 h. For the pre-treatment experiment, BuMECs were treated with vitexin for 2 h before hyperthermia exposure. For co-treatment, vitexin was added simultaneously with hyperthermia for 1 h. Subsequently, the cells were allowed to recover for 12 h at 37 °C. Results showed that pre-treatment with vitexin was more effective than co-treatment in protecting BuMECs from hyperthermia in a dose-dependent manner, with higher concentrations (50 µM and 100 µM) being the most effective. Pre-treatment with vitexin maintained cellular viability and prevented inflammation by inducing the expression of the anti-apoptotic gene (BCL-2) and reducing the expression of the pro-apoptotic gene (Bax) and pro-inflammatory mediators (IL-1ß, IL-6) in heat-stressed BuMECs. Pre-treatment with vitexin reduced oxidative stress and induced thermotolerance by increasing the expression of antioxidants mediators such as SOD, GPx and CAT at mRNA and protein levels, and modulating the expression of heat shock proteins. The findings suggest that vitexin has the potential as a therapeutic agent to protect the mammary gland from the negative impact of hyperthermia in dairy cows.


Assuntos
Búfalos , Hipertermia Induzida , Feminino , Animais , Bovinos , Estresse Oxidativo , Células Epiteliais/metabolismo
2.
3 Biotech ; 13(7): 241, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37342511

RESUMO

The present study aimed to generate antibodies against predicted B cell epitopic peptides encoding bAMH for developing different ELISA models. Sandwich ELISA was determined to be an excellent technique for assessing bAMH in bovine plasma based on sensitivity tests. The assay's specificity, sensitivity, inter- and intra-assay CV, recovery %, Lower limit of quantification (LLOQ), and Upper limit of quantification (ULOQ) were determined. The test was selective since it did not bind to AMH-related growth and differentiation factors (LH and FSH) or non-related components (BSA, progesterone). The intra-assay CV was 5.67%, 3.12%, 4.94%, 3.61% and 4.27% for 72.44, 183.11, 368.24, 522.24 and 732.25 pg/ml AMH levels, respectively. At the same time, the inter-assay CV was 8.77%, 7.87%, 4.53%, 5.76% and 6.70% for 79.30, 161.27, 356.30, 569.33 and 798.19 pg/ml AMH levels, respectively. The average (Mean ± SEM) recovery percentages were 88-100%. LLOQ was 5 pg/ml and ULOQ at 50 µg/ml (CV < 20%). In conclusion, we developed a new highly sensitive ELISA against bAMH using epitope specific antibodies.

3.
J Reprod Immunol ; 153: 103684, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35973294

RESUMO

The epithelial cell is the main basic unit of the udder in which milk synthesis takes place. Curcumin is well known for its antioxidant, anti-apoptotic, and anti- inflammatory properties. The present study was performed to test whether in vitro curcumin supplementation can alleviate the unfavorable impact of hyperthermia on buffalo mammary epithelial cells (BuMECs). The spontaneously immortalized BuMECs were divided into 7 groups (n = 9); 1) unstressed BuMECs (negative control, 37 °C); 2) BuMECs exposed to hyperthermia without curcumin treatment (positive control); 3-7) BuMECs cultured with different concentrations of curcumin (5, 10, 20, 40 and 60 µM), respectively, followed by hyperthermic exposure (42ºC) for 1 h and then returned to 37ºC. Changes in viability (MTT assay), proliferation (BrdU colorimetric immunoassay) and concentrations of antioxidant enzymes, CAT, and SOD (ELISA) of BuMECs were recorded. The gene expression study was performed using qRT-PCR. Lower concentrations of curcumin (5, 10 µM) maintained viability, enhanced proliferation, and content of antioxidant enzymes of heat stressed BuMECs. Curcumin induced thermotolerance and antioxidant status by upregulating the expression of antioxidants genes, anti-apoptotic genes and heat shock proteins in heat stressed BuMECs compared to the positive control group. Besides, curcumin reduced apoptosis and inflammation in BuMECs exposed to hyperthermia by downregulating the expression of genes and transcriptional factors associated with apoptosis and inflammatory immune response. The results reveal the potential roles of curcumin in eliminating the negative impact of hyperthermia on BuMECs by regulating the pathways of apoptosis, inflammation, and oxidative stress.


Assuntos
Curcumina , Termotolerância , Animais , Antioxidantes/metabolismo , Apoptose , Bromodesoxiuridina/metabolismo , Búfalos/metabolismo , Curcumina/metabolismo , Curcumina/farmacologia , Células Epiteliais/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Inflamação/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo
4.
Theriogenology ; 142: 433-440, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31711708

RESUMO

Heat stress hampers nutrient utilisation and production of animals, and dietary betaine supplementation can mitigate the adverse effects of heat stress on animals and improve their productivity. The present study was conducted to explore the effects of betaine supplementation on the growth performance of eighteen growing Karan Fries (KF) heifers having similar age and body conditions. The experiment was carried out on three groups (n = 6) of KF heifers viz. control, treatment I (betaine supplemented at 25  g/d/animal), and treatment II (betaine supplemented at 50  g/d/animal). The experiment lasted for eight months covering the three major seasons of Indian tropical conditions viz. hot-dry (temperature humidity index, THI = 83), hot-humid (THI = 85) and thermoneutral season (THI = 73). Blood samples were collected at fortnightly intervals and analysed for plasma growth hormone (GH; competitive ELISA) and total insulin-like growth factor 1 (IGF-1; Sandwich ELISA), as well as expression of IGF-I in peripheral blood mononuclear cells (PBMC) using real-time polymerase chain reaction. Betaine supplementation resulted in significant (p < 0.05) increase in dry matter intake, feed conversion efficiency, body weight gain, plasma GH and IGF-1 levels during all seasons. The concentrations of plasma IGF-1 and the mRNA expression of IGF-1 were higher (p < 0.01) in treatment I as compared to other groups during all seasons. Betaine supplementation at 25  g/d/animal was more cost-effective in improving growth performance of heat-stressed heifers as compared to 50  g/d/animal. The study suggests that the betaine protects intestinal integrity, enhances nutrient utilisation during heat stress and improves growth performance of growing heifers.


Assuntos
Betaína/administração & dosagem , Bovinos , Ingestão de Energia/efeitos dos fármacos , Transtornos de Estresse por Calor/dietoterapia , Resposta ao Choque Térmico/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/genética , Aumento de Peso/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Betaína/farmacologia , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Suplementos Nutricionais , Ingestão de Energia/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Crescimento e Desenvolvimento/efeitos dos fármacos , Crescimento e Desenvolvimento/genética , Transtornos de Estresse por Calor/sangue , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Umidade , Fator de Crescimento Insulin-Like I/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa