Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Cell Proteomics ; 22(9): 100627, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532177

RESUMO

As the first in-person Asia Oceania Human Proteomics Organization (AOHUPO) congress since 2018, the 11th AOHUPO congress was an opportune time for the research community to reconnect and to renew friendships after the long period of restricted travel due to the global pandemic. Moreover, this congress was a great opportunity for the many AO regional proteomics and mass spectrometry scientists to meet in Singapore to exchange ideas and to present their latest findings. Cohosted by the Singapore Society for Mass Spectrometry and the Malaysian Proteomics Society and held in conjunction with the seventh Asia Oceania Agricultural Proteomics Organization Congress and Singapore Society for Mass Spectrometry 2023, the meeting featured both human and agricultural proteomics. Over five hundred scientists from the AO region converged on the MAX Atria @ Singapore EXPO, Changi, Singapore from May 8 to 10 for the main congress. The diverse program was made up of 64 invited speakers and panellists for seven plenary lectures, 27 concurrent symposia, precongress and postcongress workshops, and 174 poster presentations. The AOHUPO society were able to celebrate not only their 20th anniversary but also the outstanding academic research from biological and agricultural proteomics and related 'omics fields being conducted across the Asia-Oceania region.


Assuntos
Proteoma , Proteômica , Humanos , Ásia , Proteômica/métodos , Espectrometria de Massas , Oceania
2.
J Neurochem ; 157(6): 2158-2172, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33606279

RESUMO

Huntington's disease (HD) is a fatal disorder associated with germline trinucleotide repeat expansions in the HTT gene and characterised by striatal neurodegeneration. No efficacious interventions are available for HD, highlighting a major unmet medical need. The molecular mechanisms underlying HD are incompletely understood despite its monogenic aetiology. However, direct interactions between HTT and membrane lipids suggest that lipidomic perturbations may be implicated in the neuropathology of HD. In this study, we employed matrix-assisted laser desorption/ionisation imaging mass spectrometry (MALDI-IMS) to generate a comprehensive, unbiased and spatially resolved lipidomic atlas of the caudate nucleus (CN) in human post-mortem tissue from neurologically normal (n = 10) and HD (n = 13) subjects. Fourier transform-ion cyclotron resonance mass spectrometry and liquid chromatography-tandem mass spectrometry were used for lipid assignment. Lipidomic specialisation was observed in the grey and white matter constituents of the CN and these features were highly conserved between subjects. While the majority of lipid species were highly conserved in HD, compared to age-matched controls, CN specimens from HD cases in our cohort spanning a range of neuropathological grades showed a lower focal abundance of the neuroprotective docosahexaenoic and adrenic acids, several cardiolipins, the ganglioside GM1 and glycerophospholipids with long polyunsaturated fatty acyls. HD cases showed a higher focal abundance of several sphingomyelins and glycerophospholipids with shorter monosaturated fatty acyls. Moreover, we demonstrate that MALDI-IMS is tractable as a primary discovery modality comparing heterogeneous human brain tissue, provided that appropriate statistical approaches are adopted. Our findings support further investigation into the potential role of lipidomic aberrations in HD.


Assuntos
Núcleo Caudado/metabolismo , Núcleo Caudado/patologia , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Idoso , Cromatografia Líquida/métodos , Estudos de Coortes , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos
3.
Exp Eye Res ; 212: 108790, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648773

RESUMO

Age related nuclear (ARN) cataracts in humans take years to form and so experimental models have been developed to mimic the process in animals as a means of better understanding the etiology of nuclear cataracts in humans. A major limitation with these animal models is that many of the biochemical and physiological changes are not typical of that seen in human ARN cataract. In this review, we highlight the work of Frank Giblin and colleagues who established an in vivo animal model that replicates many of the changes observed in human ARN cataract. This model involves exposing aged guinea pigs to hyperbaric oxygen (HBO), which by causing the depletion of the antioxidant glutathione (GSH) specifically in the lens nucleus, produces oxidative changes to nuclear proteins, nuclear light scattering and a myopic shift in lens power that mimics the change that often precedes cataract development in humans. However, this model involves multiple HBO treatments per week, with sometimes up to a total of 100 treatments, spanning up to eight months, which is both costly and time consuming. To address these issues, Giblin developed an in vitro model that used rabbit lenses exposed to HBO for several hours which was subsequently shown to replicate many of the changes observed in human ARN cataract. These experiments suggest that HBO treatment of in vitro animal lenses may serve as a more economical and efficient model to study the development of cataract. Inspired by these experiments, we investigated whether exposure of young bovine lenses to HBO for 15 h could also serve as a suitable acute model of ARN cataract. We found that while this model is able to exhibit some of the biochemical and physiological changes associated with ARN cataract, the decrease in lens power we observed was more characteristic of the hyperopic shift in refraction associated with ageing. Future work will investigate whether HBO treatment to age the bovine lens in combination with an oxidative stressor such as UV light will induce refractive changes more closely associated with human ARN cataract. This will be important as developing an animal model that replicates the changes to lens biochemistry, physiology and optics observed in human ARN cataracts is urgently required to facilitate the identification and testing of anti-cataract therapies that are effective in humans.


Assuntos
Envelhecimento , Catarata/metabolismo , Oxigenoterapia Hiperbárica/métodos , Cristalino/química , Óptica e Fotônica , Animais , Catarata/fisiopatologia , Bovinos , Humanos , Cristalino/diagnóstico por imagem , Cristalino/fisiologia , Microscopia com Lâmpada de Fenda
4.
Anal Bioanal Chem ; 413(10): 2637-2653, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33532914

RESUMO

Matrix-assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) is now an established imaging modality with particular utility in the study of biological, biomedical and pathological processes. In the first instance, the use of stable isotopically labelled (SIL) compounds in MALDI-IMS has addressed technical barriers to increase the accuracy and versatility of this technique. This has undoubtedly enhanced our ability to interpret the two-dimensional ion intensity distributions produced from biological tissue sections. Furthermore, studies using delivery of SIL compounds to live tissues have begun to decipher cell, tissue and inter-tissue metabolism while maintaining spatial resolution. Here, we review both the technical and biological applications of SIL compounds in MALDI-IMS, before using the uptake and metabolism of glucose in bovine ocular lens tissue to illustrate the current limitations of SIL compound use in MALDI-IMS. Finally, we highlight recent instrumentation advances that may further enhance our ability to use SIL compounds in MALDI-IMS to understand biological and pathological processes. Graphical Abstract.


Assuntos
Marcação por Isótopo/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Desenho de Equipamento , Glucose/análise , Glucose/metabolismo , Humanos , Marcação por Isótopo/instrumentação , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
5.
Clin Exp Ophthalmol ; 48(8): 1031-1042, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32462803

RESUMO

Ocular tissues possess a robust antioxidant defence system to minimize oxidative stress and preserve tissue structure and function. Glutathione (GSH) is a powerful antioxidant and in the lens exists at unusually high concentrations. However, with advancing age, GSH levels deplete specifically in the lens centre initiating a chain of biochemical events that ultimately result in protein aggregation, light scattering and age-related nuclear cataract. However, antioxidant supplementation has been shown to be ineffective in preventing or delaying cataract indicating that a better understanding of the delivery, uptake and metabolism of GSH in the different regions of the lens is required. This information is essential for the development of scientifically informed approaches that target the delivery of GSH to the lens nucleus, the region of the lens most affected by age-related cataract.


Assuntos
Catarata , Cristalino , Antioxidantes , Catarata/prevenção & controle , Glutationa , Humanos , Cristalino/metabolismo , Estresse Oxidativo
6.
Exp Eye Res ; 184: 146-151, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004573

RESUMO

Tryptophan-derived UV filters are predominantly found in the lenses of primates and humans. While protective against UV radiation, aging alters the complement and spatial distributions of human lens UV filters, and a role for UV filters has been suggested in age-related cataract formation. To establish how the spatial distributions of UV filters change in normal human lens aging, matrix assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) was utilised to map the locations and relative abundance of multiple UV filters simultaneously. Frozen human lenses were cryosectioned axially, and the 20 µm-thick sections coated with MALDI matrix via robotic sprayer and analysed using negative ion mode MALDI-Fourier transform-ion cyclotron resonance MS. While signal for many UV filters was detected throughout the lenses, signal intensity was generally highest in the central (embryonic) nucleus and decreased uniformly in outer (foetal, juvenile, adult) nuclear and cortical regions, and many UV filter signals declined with age. In contrast, two antioxidant-conjugated UV filters (Cys-3-OHKG and GSH-3-OHKG) were restricted to the lens nucleus and their relative signal increased with increasing lens age. The enhanced spatial resolution of MALDI-IMS over manual trephine dissection techniques and its multiplex capability allowed the spatial relationships between lens UV filters to be established and explored in relation to aging. Together these results confirmed that the complement of UV filters in each lens is dynamic and undergoes significant age-related changes. In the future, this information could be used to compare with other lens biomolecule changes to better understand the lens aging process and age-related cataract formation.


Assuntos
Envelhecimento/fisiologia , Cristalinas/metabolismo , Cristalino/metabolismo , Raios Ultravioleta , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Fourier , Glucosídeos/metabolismo , Glutationa/metabolismo , Humanos , Cinurenina/metabolismo , Núcleo do Cristalino/metabolismo , Pessoa de Meia-Idade , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
Mol Pharm ; 16(9): 3968-3976, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31348666

RESUMO

Lens is the avascular tissue in the eye between the aqueous humor and vitreous. Drug binding to the lens might affect ocular pharmacokinetics, and the binding may also have a pharmacological role in drug-induced cataract and cataract treatment. Drug distribution in the lens has been studied in vitro with many compounds; however, the experimental methods vary, no detailed information on distribution between the lens sublayers exist, and the partition coefficients are reported rarely. Therefore, our objectives were to clarify drug localization in the lens layers and establish partition coefficients for a wide range of molecules. Furthermore, we aimed to illustrate the effect of lenticular drug binding on overall ocular drug pharmacokinetics. We studied the distribution of 16 drugs and three fluorescent dyes in whole porcine lenses in vitro with imaging mass spectrometry and fluorescence microscopy techniques. Furthermore, we determined lens/buffer partition coefficients with the same experimental setup for 28 drugs with mass spectrometry. Finally, the effect of lenticular binding of drugs on aqueous humor drug exposure was explored with pharmacokinetic simulations. After 4 h, the drugs and the dyes distributed only to the outermost lens layers (capsule and cortex). The lens/buffer partition coefficients for the drugs were low, ranging from 0.05 to 0.8. On the basis of the pharmacokinetic simulations, a high lens-aqueous humor partition coefficient increases drug exposure in the lens but does not significantly alter the pharmacokinetics in the aqueous humor. To conclude, the lens seems to act mainly as a physical barrier for drug distribution in the eye, and drug binding to the lens affects mainly the drug pharmacokinetics in the lens.


Assuntos
Corantes Fluorescentes/farmacocinética , Cristalino/efeitos dos fármacos , Absorção Ocular/fisiologia , Preparações Farmacêuticas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Humor Aquoso/efeitos dos fármacos , Humor Aquoso/metabolismo , Área Sob a Curva , Soluções Tampão , Corantes Fluorescentes/química , Cristalino/metabolismo , Microscopia de Fluorescência , Peso Molecular , Absorção Ocular/efeitos dos fármacos , Concentração Osmolar , Preparações Farmacêuticas/química , Suínos , Distribuição Tecidual , Corpo Vítreo/efeitos dos fármacos , Corpo Vítreo/metabolismo
8.
J Neurochem ; 146(5): 613-630, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29804301

RESUMO

The human subventricular zone (SVZ) has a defined cytological and neurochemical architecture, with four constituent laminae that act in concert to support its neurogenic activity. Lipidomic specialisation has previously been demonstrated in the neurologically normal human SVZ, with enrichment of functionally important lipid classes in each lamina. The SVZ is also responsive to neurodegenerative disorders, where thickening of the niche and enhanced proliferation of resident cells were observed in Huntington's disease (HD) brains. In this study, we hypothesised lipidomic changes in the HD SVZ. Using matrix-assisted laser desorption/ionisation (MALDI) imaging mass spectrometry, this analysis shows differences in the lipidomic architecture in the post-mortem Vonsattel grade III cases. Relative to matched, neurologically normal specimens (N = 4), the lipidomic signature of the HD SVZ (N = 4) was characterized by loss of sulfatides and triglycerides in the myelin layer, with an ectopic and focal accumulation of sphingomyelins and ceramide-1-phosphate observed in this lamina. A striking loss of lipidomic patterning was also observed in the ependymal layer, where the local abundance of phosphatidylinositols was significantly reduced in HD. This comprehensive spatially resolved lipidomic analysis of the human HD SVZ identifies alterations in lipid architecture that may shed light on the mechanisms of SVZ responses to neurodegeneration in HD. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Doença de Huntington/patologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Metabolismo dos Lipídeos , Adulto , Idoso , Autopsia , Feminino , Análise de Fourier , Humanos , Lipídeos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Monoéster Fosfórico Hidrolases , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esfingomielinas , Sulfoglicoesfingolipídeos , Triglicerídeos
9.
Exp Eye Res ; 156: 117-123, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27282996

RESUMO

Outside the traditional roles of the lens as an important refractive element and a UV filter, it was David Beebe's group that first demonstrated that the lens acts an oxygen sink that protects the tissues of the anterior segment of the eye from oxygen or oxygen metabolites. In this review, we follow on from this work, and present new evidence from our laboratory to demonstrate that the lens serves as a reservoir for the release of the antioxidant glutathione (GSH) into the aqueous humor to provide a source of GSH and/or its precursor amino acids to nearby tissues that interface with the aqueous humor, or to remove toxic metabolites from the eye via the aqueous outflow pathway. In addition to GSH release, our laboratory and others have shown that ATP is released from the lens under hyposmotic conditions to activate purinergic signalling pathways in an autocrine manner to alter lens function. In this review, we raise the idea that ATP and/or its subsequent degradation product adenosine may exert a paracrine function and influence purinergic signalling systems in other tissues to alter aqueous humor outflow. These new secondary roles indicate that the lens is not just a passive optical element, but a highly dynamic and active tissue that interacts with its neighbouring tissues, through modifying the environments in which these tissues function. We believe that the lens actively contributes to the ocular environment and as a consequence, removal of the lens would alter the functionality of neighbouring tissues. We speculate that a long term effect of lens removal may be to inadvertently increase the exposure of anterior tissues of the eye to oxidative stress due to elevated oxygen levels and a reduction in the availability of GSH and purinergic signalling molecules in the aqueous humor. Since cataract surgery is now being performed on younger patients due to our increasing diabetic population, over time, we predict these changes may increase the susceptibility of these tissues to oxidative stress and the incidence of subsequent ocular pathologies. If our view of the lens is correct, the actual loss of the biological lens may have longer term consequences for overall ocular health than currently appreciated.


Assuntos
Cristalino/fisiologia , Fenômenos Fisiológicos Oculares , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Humor Aquoso/metabolismo , Glutationa/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Malha Trabecular/metabolismo
10.
Exp Eye Res ; 154: 70-78, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838309

RESUMO

Glutathione (GSH) is the archetypal antioxidant, and plays a central role in the protection of the ocular lens from cataract formation. High levels of GSH are maintained in the transparent lens, but with advancing age, GSH levels fall in the lens nucleus relative to outer cortical cells, thereby exposing the nucleus of the lens to the damaging effects of oxygen radicals, which ultimately leads to age-related nuclear (ARN) cataract. Under normal conditions, GSH also forms endogenous conjugates to detoxify the lens of reactive cellular metabolites and to maintain cell homeostasis. Due to the intrinsic gradient of lens fibre cell age, the lens contains distinct regions with different metabolic requirements for GSH. To investigate the impact of fibre cell and lens aging on the varied roles that GSH plays in the lens, we have utilised high mass resolution MALDI mass spectrometry profiling and imaging analysis of lens tissue sections. High Dynamic Range (HDR)-MALDI FTICR mass spectrometry was used as an initial screening method to detect regional differences in lens metabolites from normal bovine lenses and in those subjected to hyperbaric oxygen as a model of lens aging. Subsequent MALDI imaging analysis was used to spatially map GSH and its endogenous conjugates throughout all lenses. Accurate mass measurement by MALDI FTICR analysis and LC-MS/MS mass spectrometry of lens region homogenates were subsequently used to identify endogenous GSH conjugates. While the distribution and relative abundance of GSH-related metabolic intermediates involved in detoxification pathways remained relatively unchanged upon HBO treatment, those involved in its antioxidant function were altered under conditions of oxidative stress. For example, reduced glutathione levels were decreased in the lens cortex while oxidised glutathione levels were elevated in the lens outer cortex upon HBO treatment. Interestingly, cysteineglutathione disulfide, was detected in the inner cortex of the normal lens, but was greatly decreased in the HBO-treated lenses. These results contribute to our understanding of the multiple roles that GSH plays in maintenance of lens transparency and in the age-related metabolic changes that lead to lens cataract formation.


Assuntos
Envelhecimento/metabolismo , Catarata/metabolismo , Cristalinas/metabolismo , Glutationa/metabolismo , Cristalino/metabolismo , Metabolômica/métodos , Estresse Oxidativo , Animais , Bovinos , Modelos Animais de Doenças , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Distribuição Tecidual
11.
Proteomics ; 16(11-12): 1767-74, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26990122

RESUMO

MALDI imaging mass spectrometry (IMS) has been applied to whole animal tissue sections of Pacific White Shrimp, Litopenaeus vannamei, in an effort to identify and spatially localize proteins in specific organ systems. Frozen shrimp were sectioned along the ventral-dorsal axis and methods were optimized for matrix application. In addition, tissue microextraction and homogenization was conducted followed by top-down LC-MS/MS analysis of intact proteins and searches of shrimp EST databases to identify imaged proteins. IMS images revealed organ system specific protein signals that highlighted the hepatopancreas, heart, nervous system, musculature, and cuticle. Top-down proteomics identification of abdominal muscle proteins revealed the sequence of the most abundant muscle protein that has no sequence homology to known proteins. Additional identifications of abdominal muscle proteins included titin, troponin-I, ubiquitin, as well as intact and multiple truncated forms of flightin; a protein known to function in high frequency contraction of insect wing muscles. The combined use of imaging mass spectrometry and top-down proteomics allowed for identification of novel proteins from the sparsely populated shrimp protein databases.


Assuntos
Proteínas Musculares/isolamento & purificação , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Músculos Abdominais/metabolismo , Animais , Imagem Molecular , Proteínas Musculares/metabolismo , Penaeidae/metabolismo
12.
Exp Eye Res ; 132: 124-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595964

RESUMO

The expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established. Immunohistochemistry was used to map the cellular and sub-cellular distribution of AQP5 and AQP0 throughout the lens in cryosections from adult (6 weeks-8 months) and postnatal (0-2 weeks) mouse lenses and in sections from paraffin embedded mouse embryos (E10-E19). All sections were imaged by fluorescence confocal microscopy. Using antibodies directed against the C-terminus of each AQP, AQP5 was abundantly expressed early in development, being found in the cytoplasm of cells of the lens vesicle and surrounding tissues (E10), while AQP0 was detected later (E11), and only in the membranes of elongating primary fibre cells. During the course of subsequent embryonic and postnatal development the pattern of cytoplasmic AQP5 and membranous AQP0 labelling was maintained until postnatal day 6 (P6). From P6 AQP5 labelling became progressively more membranous initially in the lens nucleus and then later in all regions of the lens, while AQP0 labelling was abruptly lost in the lens nucleus due to C-terminal truncation. Our results show that the spatial distribution patterns of AQP0 and AQP5 observed in the adult lens are established during a narrow window of postnatal development (P6-P15) that precedes eye opening and coincides with regression of the hyaloid vascular system. Our results support the hypothesis that, in the older fibre cells, insertion of AQP5 into the fibre cell membrane may compensate for any change in the functionality of AQP0 induced by truncation of its C-terminal tail.


Assuntos
Aquaporina 5/metabolismo , Aquaporinas/metabolismo , Proteínas do Olho/metabolismo , Cristalino/metabolismo , Animais , Western Blotting , Membrana Celular/metabolismo , Citoplasma/metabolismo , Imuno-Histoquímica , Cápsula do Cristalino/metabolismo , Núcleo do Cristalino/metabolismo , Cristalino/embriologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Processamento de Proteína Pós-Traducional
13.
Proteomics ; 14(7-8): 936-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24453194

RESUMO

Lipofuscin, an aging marker in the retinal pigment epithelium (RPE) associated with the development of age-related macular degeneration, is primarily characterized by its fluorescence. The most abundant component of RPE lipofuscin is N-retinylidene-N-retinylethanolamine (A2E) but its exact composition is not known due to the complexity of the RPE extract. In this study, we utilized MALDI imaging to find potential molecules responsible for lipofuscin fluorescence in RPE tissue from Abca4(-/-) , Sv129, and C57Bl6/J mice aged 2 and 6 months. To assert relationships, the individual images in the MALDI imaging datasets were correlated with lipofuscin fluorescence recorded from the same tissues following proper registration. Spatial correlation information, which is usually lost in bioanalytics, pinpointed a relatively small number of potential lipofuscin components. The comparison of four samples in each condition further limited the possibility of false positives and provided various new, age- and strain-specific targets. Validating the usefulness of the fluorescence-enhanced imaging strategy, many known adducts of A2E were identified in the short list of lipofuscin components. These results provided evidence that mass spectrometric imaging can be utilized as a tool to begin to identify the molecular substructure of clinically-relevant diagnostic information.


Assuntos
Lipofuscina/química , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Fluorescência , Regulação da Expressão Gênica , Humanos , Lipofuscina/metabolismo , Degeneração Macular/patologia , Camundongos , Proteômica , Epitélio Pigmentado da Retina/química , Retinoides/química
14.
Alzheimers Dement ; 10(2): 251-61, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24011928

RESUMO

Alzheimer's disease (AD) is the most common form of dementia with progressive deterioration of memory and cognition. Complaints related to vision are common among AD patients. Several changes in the retina, lens, and in the vasculature have been noted in the AD eye that may be the cause of visual symptoms experienced by the AD patient. Anatomical changes have been detected within the eye before signs of cognitive impairment and memory loss are apparent. Unlike the brain, the eye is a unique organ that can be visualized noninvasively at the cellular level because of its transparent nature, which allows for inexpensive testing of biomarkers in a clinical setting. In this review, we have searched for candidate biomarkers that could enable diagnosis of AD, covering ocular neurodegeneration associated with functional tests. We explore the evidence that suggests that inexpensive, noninvasive clinical tests could be used to detect AD ocular biomarkers.


Assuntos
Doença de Alzheimer/complicações , Oftalmopatias/etiologia , Vias Visuais/patologia , Doença de Alzheimer/genética , Oftalmopatias/genética , Oftalmopatias/patologia , Humanos
15.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798449

RESUMO

Human lens fiber membrane intrinsic protein MP20 is the second most abundant membrane protein of the human eye lens. Despite decades of effort its structure and function remained elusive. Here, we determined the MicroED structure of full-length human MP20 in lipidic-cubic phase to a resolution of 3.5 Å. MP20 forms tetramers each of which contain 4 transmembrane α-helices that are packed against one another forming a helical bundle. Both the N- and C- termini of MP20 are cytoplasmic. We found that each MP20 tetramer formed adhesive interactions with an opposing tetramer in a head-to-head fashion. These interactions were mediated by the extracellular loops of the protein. The dimensions of the MP20 adhesive junctions are consistent with the 11 nm thin lens junctions. Investigation of MP20 localization in human lenses indicated that in young fiber cells MP20 was stored intracellularly in vesicles and upon fiber cell maturation MP20 inserted into the plasma membrane and restricted the extracellular space. Together these results suggest that MP20 forms lens thin junctions in vivo confirming its role as a structural protein in the human eye lens, essential for its optical transparency.

16.
Biochemistry ; 52(22): 3807-17, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23394619

RESUMO

Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.


Assuntos
Aquaporinas/análise , Espectrometria de Massas/métodos , Proteômica/métodos , Acilação , Animais , Ácidos Graxos/metabolismo , Humanos , Marcação por Isótopo/métodos , Proteínas de Membrana/análise , Proteínas de Membrana/isolamento & purificação , Fosforilação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
17.
Arch Biochem Biophys ; 539(2): 196-202, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23969078

RESUMO

The accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD) in humans. The exact composition of lipofuscin is not known but its best characterized component is N-retinylidene-N-retinylethanolamine (A2E), a byproduct of the retinoid visual cycle. Utilizing our recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS)-based technique to determine the spatial distribution of A2E, this study compares the relationships of lipofuscin fluorescence and A2E in the murine and human RPE on representative normal tissue. To identify molecules with similar spatial patterns, the images of A2E and lipofuscin were correlated with all the individual images in the MALDI-IMS dataset. In the murine RPE, there was a remarkable correlation between A2E and lipofuscin. In the human RPE, however, minimal correlation was detected. These results were reflected in the marked distinctions between the molecules that spatially correlated with the images of lipofuscin and A2E in the human RPE. While the distribution of murine lipofuscin showed highest similarities with some of the known A2E-adducts, the composition of human lipofuscin was significantly different. These results indicate that A2E metabolism may be altered in the human compared to the murine RPE.


Assuntos
Lipofuscina/química , Fosfatidiletanolaminas/química , Epitélio Pigmentado da Retina/química , Retinoides/química , Animais , Humanos , Lipofuscina/metabolismo , Lipofuscina/fisiologia , Camundongos , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Retinoides/metabolismo , Retinoides/fisiologia , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Exp Eye Res ; 108: 94-102, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23313152

RESUMO

Until recently, the lens was thought to express only two aquaporin (AQP) water channels, AQP1 and AQP0. In this study we confirm lenticular AQP5 protein expression by Western blotting and mass spectrometry in lenses from a variety of species. In addition, confocal microscopy was used to map cellular distributions of AQP5 in mouse, rat and human lenses. Tandem mass spectrometry of a human lens membrane preparation revealed extensive sequence coverage (56.2%) of AQP5. Western blotting performed on total fiber cell membranes from mouse, rat, bovine and human lenses confirmed AQP5 protein expression is conserved amongst species. Western blotting of dissected lens fractions suggests that AQP5 is processed in the lens core by C-terminal truncation. Immunohistochemistry showed that AQP5 signal was most abundant in the lens outer cortex and decreased in intensity in the lens core. Furthermore, AQP5 undergoes differentiation-dependent changes in subcellular location from an intracellular localization in differentiating fiber cells to the plasma membrane of mature fiber cells upon the loss of fiber cell nuclei. Our results show that AQP5 is a significant component of lens fiber cell membranes, representing the second most abundant water channel in these cells. Together, the changes to AQP5 distribution and structure are likely to modulate the functional role of AQP5 in different regions of the lens.


Assuntos
Aquaporina 5/análise , Cristalino/química , Idoso , Sequência de Aminoácidos , Animais , Western Blotting , Bovinos , Diferenciação Celular , Humanos , Imuno-Histoquímica , Cristalino/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Pessoa de Meia-Idade , Dados de Sequência Molecular , Transporte Proteico , Proteômica/métodos , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem
19.
Prog Retin Eye Res ; 95: 101152, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36470825

RESUMO

The lens is an important determinant of overall vision quality whose refractive and transparent properties change throughout life. Alterations to the refractive properties of the lens contribute to the process of emmetropisation in early childhood, and then the gradual loss in lens power that occurs throughout adulthood. In parallel to these changes to lens refractive power, age-dependent increases in lens stiffness and light scattering result in presbyopia and cataract, respectively. In recent years it has been confirmed that the lens operates an internal microcirculation system that generates circulating fluxes of ions, water and nutrients that maintain the refractive properties and transparency of the lens. By actively regulating lens water content, the microcirculation system controls two key parameters, lens geometry and the gradient of refractive index, which together determine the refractive properties of the lens. Furthermore, by delivering nutrients and antioxidants to the lens nucleus, the microcirculation system maintains lens transparency by preventing crystallin aggregation. Interestingly, the solubility, intramolecular packing and refractive index increment of crystallin proteins can be modulated by the ability of crystallin proteins to dynamically bind water, a processed called syneresis. In a series of previous studies it has been shown that the application of external pressure to the lens can induce syneresis. Since it is now known that lens water transport generates a substantial internal hydrostatic pressure gradient, we speculate that the microcirculation is capable of regulating crystallin function by altering the amount of water bound to lens proteins in the nucleus, where the pressure gradient and protein concentrations are the highest. Here we present evidence for the links between lens transport, pressure, syneresis and protein function. Furthermore, because the lens pressure gradient can be regulated by intrinsic and extrinsic stimuli, we suggest mechanisms via which this integrative system can be used to effect the changes to the refractive and transparent properties of the lens that are observed across our lifetime.


Assuntos
Catarata , Cristalinas , Cristalino , Pré-Escolar , Humanos , Adulto , Cristalino/metabolismo , Catarata/metabolismo , Refração Ocular
20.
Front Physiol ; 13: 901407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711316

RESUMO

Purpose: To spatially correlate the pattern of glucose uptake to glucose transporter distributions in cultured lenses and map glucose metabolism in different lens regions. Methods: Ex vivo bovine lenses were incubated in artificial aqueous humour containing normoglycaemic stable isotopically-labelled (SIL) glucose (5 mM) for 5 min-20 h. Following incubations, lenses were frozen for subsequent matrix-assisted laser desorption/ionisation (MALDI) imaging mass spectrometry (IMS) analysis using high resolution mass spectrometry. Manually dissected, SIL-incubated lenses were subjected to gas chromatography-mass spectrometry (GC-MS) to verify the identity of metabolites detected by MALDI-IMS. Normal, unincubated lenses were manually dissected into epithelium flat mounts and fibre cell fractions and then subjected to either gel-based proteomic analysis (Gel-LC/MS) to detect facilitative glucose transporters (GLUTs) by liquid chromatography tandem mass spectrometry (LC-MS/MS). Indirect immunofluorescence and confocal microscopy of axial lens sections from unincubated fixed lenses labelled with primary antibodies specific for GLUT 1 or GLUT 3 were utilised for protein localisation. Results: SIL glucose uptake at 5 min was concentrated in the equatorial region of the lens. At later timepoints, glucose gradually distributed throughout the epithelium and the cortical lens fibres, and eventually the deeper lens nucleus. SIL glucose metabolites found in glycolysis, the sorbitol pathway, the pentose phosphate pathway, and UDP-glucose formation were mapped to specific lens regions, with distinct regional signal changes up to 20 h of incubation. Spatial proteomic analysis of the lens epithelium detected GLUT1 and GLUT3. GLUT3 was in higher abundance than GLUT1 throughout the epithelium, while GLUT1 was more abundant in lens fibre cells. Immunohistochemical mapping localised GLUT1 to epithelial and cortical fibre cell membranes. Conclusion: The major uptake site of glucose in the bovine lens has been mapped to the lens equator. SIL glucose is rapidly metabolised in epithelial and fibre cells to many metabolites, which are most abundant in the metabolically more active cortical fibre cells in comparison to central fibres, with low levels of metabolic activity observed in the nucleus.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa