Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 18(8): 892-904, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31235902

RESUMO

Implantable medical devices have revolutionized modern medicine. However, immune-mediated foreign body response (FBR) to the materials of these devices can limit their function or even induce failure. Here we describe long-term controlled-release formulations for local anti-inflammatory release through the development of compact, solvent-free crystals. The compact lattice structure of these crystals allows for very slow, surface dissolution and high drug density. These formulations suppress FBR in both rodents and non-human primates for at least 1.3 years and 6 months, respectively. Formulations inhibited fibrosis across multiple implant sites-subcutaneous, intraperitoneal and intramuscular. In particular, incorporation of GW2580, a colony stimulating factor 1 receptor inhibitor, into a range of devices, including human islet microencapsulation systems, electrode-based continuous glucose-sensing monitors and muscle-stimulating devices, inhibits fibrosis, thereby allowing for extended function. We believe that local, long-term controlled release with the crystal formulations described here enhances and extends function in a range of medical devices and provides a generalized solution to the local immune response to implanted biomaterials.


Assuntos
Fibrose/etiologia , Fibrose/prevenção & controle , Próteses e Implantes/efeitos adversos , Animais , Preparações de Ação Retardada , Composição de Medicamentos , Macrófagos/efeitos dos fármacos , Roedores
2.
Nat Mater ; 16(6): 671-680, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28319612

RESUMO

Host recognition and immune-mediated foreign body response to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knockout and CXCL13 neutralization. Interestingly, colony stimulating factor-1 receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, reactive oxygen species production and phagocytosis. Our results indicate that targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Reação a Corpo Estranho/induzido quimicamente , Reação a Corpo Estranho/metabolismo , Próteses e Implantes/efeitos adversos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Reação a Corpo Estranho/imunologia , Camundongos , Primatas
4.
Sci Adv ; 9(24): eade9488, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327334

RESUMO

Biomedical devices comprise a major component of modern medicine, however immune-mediated fibrosis and rejection can limit their function over time. Here, we describe a humanized mouse model that recapitulates fibrosis following biomaterial implantation. Cellular and cytokine responses to multiple biomaterials were evaluated across different implant sites. Human innate immune macrophages were verified as essential to biomaterial rejection in this model and were capable of cross-talk with mouse fibroblasts for collagen matrix deposition. Cytokine and cytokine receptor array analysis confirmed core signaling in the fibrotic cascade. Foreign body giant cell formation, often unobserved in mice, was also prominent. Last, high-resolution microscopy coupled with multiplexed antibody capture digital profiling analysis supplied spatial resolution of rejection responses. This model enables the study of human immune cell-mediated fibrosis and interactions with implanted biomaterials and devices.


Assuntos
Materiais Biocompatíveis , Corpos Estranhos , Humanos , Animais , Camundongos , Reação a Corpo Estranho/etiologia , Modelos Animais de Doenças , Citocinas , Fibrose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa