Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 717: 135105, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31839292

RESUMO

The isotopic composition of groundwater can be a useful indicator of recharge conditions and may be used as an archive to infer past climate variability. Groundwater from two largely confined aquifers in south-west Australia, recharged at the northernmost extent of the westerly wind belt, can help constrain the palaeoclimate record in this region. We demonstrate that radiocarbon age measurements of dissolved inorganic carbon are appropriate for dating groundwater from the Leederville aquifer and Yarragadee aquifer within the Perth Basin. Variations in groundwater δ18O values with mean residence time were examined using regional and flow line data sets, which were compared. The trends in the regional groundwater data are consistent with the groundwater flow line data supporting the hypothesis that groundwater δ18O is a robust proxy for palaeo-recharge in the Perth Basin. A comparison between modern groundwater and rainfall water isotopes indicates that recharge is biased to months with high volume and/or intense rainfall from the westerly wind circulation and that this has been the case for the last 35 ka. Lower stable water isotope values are interpreted to represent recharge from higher volume and/or more intense rainfall from 35 ka through the Last Glacial Maximum period although potentially modulated by changes in recharge thresholds. The Southern Perth Basin groundwater isotopic record also indicates a trend towards higher volume and/or intense rainfall during the Mid- to Late Holocene. The long-term stable water isotope record provides an understanding of groundwater palaeo-recharge. Knowledge of recharge dynamics over long time scales can be used to improve current water sharing plans and future groundwater model predictions.

2.
Sci Total Environ ; 580: 105-116, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28011028

RESUMO

The combined influences of recent mitigation measures on urban air quality have been assessed using hourly observations of the criteria air pollutants (NO, NO2, O3, CO, and SO2) made from the Yongsan district of Seoul, Korea, over 26years (1987 to 2013). A number of data selection criteria are proposed in order to minimize variability associated with temporal changes (at diurnal, weekly, and seasonal timescales) in source strengths, their spatial distribution, and the atmospheric volume into which they mix. The temporal constraints required to better characterize relationships between observed air quality and changes in source strengths in Seoul were identified as: (i) a 5-hour diurnal sampling window (1300-1700h), (b) weekday measurements (Monday to Friday only), and (c) summer measurements (when pollutant fetch is mostly Korea-specific, and mean wind speeds are the lowest). Using these selection criteria, we were able to closely relate long-term trends identified in criteria pollutants to a number of published changes to traffic-related source strengths brought about by mitigation measures adopted over the last 10-15years.

3.
J Environ Radioact ; 154: 68-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26854556

RESUMO

A radon-based nocturnal stability classification scheme is developed for a flat inland site near Bucharest, Romania, characterised by significant local surface roughness heterogeneity, and compared with traditional meteorologically-based techniques. Eight months of hourly meteorological and atmospheric radon observations from a 60 m tower at the IFIN-HH nuclear research facility are analysed. Heterogeneous surface roughness conditions in the 1 km radius exclusion zone around the site hinder accurate characterisation of nocturnal atmospheric mixing conditions using conventional meteorological techniques, so a radon-based scheme is trialled. When the nocturnal boundary layer is very stable, the Pasquill-Gifford "radiation" scheme overestimates the atmosphere's capacity to dilute pollutants with near-surface sources (such as tritiated water vapour) by 20% compared to the radon-based scheme. Under these conditions, near-surface wind speeds drop well below 1 m s(-1) and nocturnal mixing depths vary from ∼ 25 m to less than 10 m above ground level (a.g.l.). Combining nocturnal radon with daytime ceilometer data, we were able to reconstruct the full diurnal cycle of mixing depths. Average daytime mixing depths at this flat inland site range from 1200 to 1800 m a.g.l. in summer, and 500-900 m a.g.l. in winter. Using tower observations to constrain the nocturnal radon-derived effective mixing depth, we were able to estimate the seasonal range in the Bucharest regional radon flux as: 12 mBq m(-2) s(-1) in winter to 14 mBq m(-2) s(-1) in summer.


Assuntos
Poluentes Radioativos do Ar/análise , Atmosfera/química , Monitoramento de Radiação/métodos , Radônio/análise , Ritmo Circadiano , Romênia , Estações do Ano
4.
Appl Opt ; 44(31): 6653-9, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16270554

RESUMO

A sensor based on tunable diode laser absorption spectroscopy was constructed for time-resolved temperature and water vapor concentration measurements in a scramjet combustor. The sensor probed two absorption lines near 1390 nm with two time-multiplexed lasers used to measure temperature and water vapor concentration at up to 20 kHz. A demonstration experiment was performed in the supersonic, expanding exhaust region of the combustor, showing the measurement to be repeatable, able to resolve temporal trends during tunnel operation, and sensitive to changes in combustor operating conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa