Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478746

RESUMO

In the recent mpox outbreak, people living with HIV (PLWH) were at high risk both for contracting infection and for suffering a more severe disease course. We studied cellular and humoral immune responses elicited by mpox infection (n = 5; n = 3 PLWH) or smallpox vaccination (n = 17; all PLWH) in a cohort of men who have sex with men. All PLWH were successfully treated, with stable CD4 counts and undetectable HIV viral loads. 11/17 vaccinated individuals had received childhood smallpox vaccination. In this group of individuals, both two-dose MVA-vaccination and natural infection evoked mpox-specific immune responses mediated by B cells as well as CD4 and CD8 T cells. This study improves our understanding of smallpox vaccination mediated cross-reactivity to other orthopox viruses, and the long-lasting durability of childhood smallpox vaccination mediated immune responses including in PLWH.

2.
Front Oncol ; 14: 1290614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414746

RESUMO

Here we describe the case of a 51 years old Italian woman with acute lymphoblastic leukemia who underwent to hematopoietic stem cell transplantation (HSCT) during SARS-COV-2 infection. She presented a prolonged COVID-19 successfully treated with dual anti SARS-COV-2 antiviral plus monoclonal antibody therapy.

3.
Cell Rep Med ; 5(6): 101583, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38781962

RESUMO

Little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS2) vaccine breakthrough infections (BTIs) on the magnitude and breadth of the T cell repertoire after exposure to different variants. We studied samples from individuals who experienced symptomatic BTIs during Delta or Omicron waves. In the pre-BTI samples, 30% of the donors exhibited substantial immune memory against non-S (spike) SARS2 antigens, consistent with previous undiagnosed asymptomatic SARS2 infections. Following symptomatic BTI, we observed (1) enhanced S-specific CD4 and CD8 T cell responses in donors without previous asymptomatic infection, (2) expansion of CD4 and CD8 T cell responses to non-S targets (M, N, and nsps) independent of SARS2 variant, and (3) generation of novel epitopes recognizing variant-specific mutations. These variant-specific T cell responses accounted for 9%-15% of the total epitope repertoire. Overall, BTIs boost vaccine-induced immune responses by increasing the magnitude and by broadening the repertoire of T cell antigens and epitopes recognized.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , COVID-19 , Epitopos de Linfócito T , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Memória Imunológica/imunologia , Feminino , Adulto , Masculino , Mutação , Pessoa de Meia-Idade , Linfócitos T/imunologia , Infecções Irruptivas
4.
Commun Med (Lond) ; 4(1): 19, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366141

RESUMO

BACKGROUND: Although the mpox global health emergency caused by mpox virus (MPXV) clade IIb.1 has ended, mpox cases are still reported due to low vaccination coverage and waning immunity. COH04S1 is a clinically evaluated, multiantigen COVID-19 vaccine candidate built on a fully synthetic platform of the highly attenuated modified vaccinia Ankara (MVA) vector, representing the only FDA-approved smallpox/mpox vaccine JYNNEOS. Given the potential threat of MPXV resurgence and need for vaccine alternatives, we aimed to assess the capacity COH04S1 and its synthetic MVA (sMVA) backbone to confer MPXV-specific immunity. METHODS: We evaluated orthopoxvirus-specific and MPXV cross-reactive immune responses in samples collected during a Phase 1 clinical trial of COH04S1 and in non-human primates (NHP) vaccinated with COH04S1 or its sMVA backbone. MPXV cross-reactive immune responses in COH04S1-vaccinated healthy adults were compared to responses measured in healthy subjects vaccinated with JYNNEOS. Additionally, we evaluated the protective efficacy of COH04S1 and sMVA against mpox in mpox-susceptible CAST/EiJ mice. RESULTS: COH04S1-vaccinated individuals develop robust orthopoxvirus-specific humoral and cellular responses, including cross-reactive antibodies to MPXV-specific virion proteins as well as MPXV cross-neutralizing antibodies in 45% of the subjects. In addition, NHP vaccinated with COH04S1 or sMVA show similar MPXV cross-reactive antibody responses. Moreover, MPXV cross-reactive humoral responses elicited by COH04S1 are comparable to those measured in JYNNEOS-vaccinated subjects. Finally, we show that mice vaccinated with COH04S1 or sMVA are protected from lung infection following challenge with MPXV clade IIb.1. CONCLUSIONS: These results demonstrate the capacity of sMVA vaccines to elicit cross-reactive and protective orthopox-specific immunity against MPXV, suggesting that COH04S1 and sMVA could be developed as bivalent or monovalent mpox vaccine alternatives against MPXV.


Mpox is an ilness caused by the mpox virus (MPXV) that belongs to the poxvirus family. The 2022-2023 mpox outbreak highlights the need to develop effective vaccines against MPXV. We have developed a COVID-19 vaccine using as scaffold chemically synthesized genetic material of a highly attenuated and safe poxvirus vector. This scaffold is the same present in a vaccine that has been approved and is given to prevent mpox. Here, we show that healthy human volunteers or monkeys vaccinated with this COVID-19 vaccine generated a robust immune response against MPXV, similar to that generated by the mpox vaccine with the same scaffold. This COVID-19 vaccine is also able to protect mice from infection caused by the MPXV strain isolated from the recent mpox outbreak. This COVID-19 vaccine in a poxvirus scaffold might be an additional tool to curtail mpox outbreaks.

5.
Cell Host Microbe ; 32(2): 162-169.e3, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38211583

RESUMO

Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has given rise to recombinant Omicron lineages that dominate globally (XBB.1), as well as the emergence of hypermutated variants (BA.2.86). In this context, durable and cross-reactive T cell immune memory is critical for continued protection against severe COVID-19. We examined T cell responses to SARS-CoV-2 approximately 1.5 years since Omicron first emerged. We describe sustained CD4+ and CD8+ spike-specific T cell memory responses in healthcare workers in South Africa (n = 39) who were vaccinated and experienced at least one SARS-CoV-2 infection. Spike-specific T cells are highly cross-reactive with all Omicron variants tested, including BA.2.86. Abundant nucleocapsid and membrane-specific T cells are detectable in most participants. The bulk of SARS-CoV-2-specific T cell responses have an early-differentiated phenotype, explaining their persistent nature. Overall, hybrid immunity leads to the accumulation of spike and non-spike T cells evident 3.5 years after the start of the pandemic, with preserved recognition of highly mutated SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Células T de Memória , Pandemias , Glicoproteína da Espícula de Coronavírus/genética
6.
Lancet Microbe ; 5(8): 100859, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857615

RESUMO

BACKGROUND: Since the emergence of the global mpox outbreak in May, 2022, more than 90 000 cases have been diagnosed across 110 countries, disproportionately affecting people with HIV. The durability of mpox-specific immunity is unclear and reinfections have been reported. We aimed to compare mpox immune responses up to 6 months after diagnosis in participants with and without HIV and assess their effect on disease severity and viral clearance dynamics. METHODS: This study was embedded within a prospective, observational, multicentre cohort study of viral clearance dynamics among people with mpox in Spain (MoViE). We included women and men aged 18 years or older, who had signs of mpox, and reported having symptom onset within the previous 10 days at the moment of mpox diagnosis from three sex clinics of the Barcelona metropolitan area. Samples from skin ulcers were collected weekly to estimate the time to clear monkeypox virus (MPXV) from skin lesions. Blood samples were taken at diagnosis, 29, 91, and 182 days later for immune analysis. This included quantifying IgG and IgA against three mpox antigens by ELISA, evaluating in-vitro neutralisation, and characterising mpox-specific T-cell responses using interferon γ detecting enzyme-linked immunospot (ELISpot) assay and multiparametric flow cytometry. FINDINGS: Of the 77 originally enrolled participants, we included 33 participants recruited between July 19, and Oct 6, 2022. Participants without HIV (19 [58%] participants) and participants with HIV (14 [42%] participants) had similar clinical severity and time to MPXV clearance in skin lesions. Participants with HIV had a CD4+ T-cell count median of 777 cells per µL (IQR 484-1533), and 11 (78%) of 14 were virally suppressed on antiretroviral therapy. Nine (27%) of 33 participants were age 49 years or older. 15 (45%) of 33 participants were originally from Spain, and all participants were men. Early humoral responses, particularly concentrations and breadth of IgG and IgA, were associated with milder disease and faster viral clearance. Orthopoxvirus-specific T cells count was also positively correlated with MPXV clearance. Antibody titres declined more rapidly in participants with HIV, but T-cell responses against MPXV were sustained up to day 182 after diagnosis, regardless of HIV status. INTERPRETATION: Higher breadth and magnitude of B-cell and T-cell responses are important in facilitating local viral clearance, limiting mpox dissemination, and reducing disease severity in individuals with preserved immune system. Antibodies appear to contribute to early viral control and T-cell responses are sustained over time, which might contribute to milder presentations during reinfection. FUNDING: Fundació Lluita contra les Infeccions, IrsiCaixa, and Consorcio Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Ministerio de Ciencia, Innovación e Universidades.


Assuntos
Infecções por HIV , Humanos , Masculino , Espanha/epidemiologia , Infecções por HIV/imunologia , Infecções por HIV/epidemiologia , Estudos Prospectivos , Adulto , Feminino , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Carga Viral , Linfócitos T/imunologia
7.
Wellcome Open Res ; 9: 181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022321

RESUMO

A strong and effective COVID-19 and future pandemic responses rely on global efforts to carry out surveillance of infections and emerging SARS-CoV-2 variants and to act accordingly in real time. Many countries in Southeast Asia lack capacity to determine the potential threat of new variants, or other emerging infections. Funded by Wellcome, the Southeast Asia initiative to combat SARS-CoV-2 variants (SEACOVARIANTS) consortium aims to develop and apply a multidisciplinary research platform in Southeast Asia (SEA) for rapid assessment of the biological significance of SARS-CoV-2 variants, thereby informing coordinated local, regional and global responses to the COVID-19 pandemic. Our proposal is delivered by the Vietnam and Thailand Wellcome Africa Asia Programmes, bringing together a multidisciplinary team in Indonesia, Thailand and Vietnam with partners in Singapore, the UK and the USA. Herein we outline five work packages to deliver strengthened regional scientific capacity that can be rapidly deployed for future outbreak responses.


Our project strengthens local scientific capacity in South East Asia (SEA) and therefore enables the rapid assessment of SARS-CoV-2 variants as they emerge within the region. While COVID-19 remains a global pandemic, future emerging infections caused by a novel virus is an inevitable event, with SEA being a global hot-spot for pathogen emergence. Consequently, the research capacity built, the scientists trained and the research network formed as part of this project will lay the foundation for future locally-led outbreak responses. Our project will demonstrate that novel research platforms can be set up in other low and middle income countries to address the unprecedented challenges presented by emerging infections.

8.
Front Immunol ; 15: 1372193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812507

RESUMO

Background: Vaccine effectiveness against SARS-CoV-2 infection has been somewhat limited due to the widespread dissemination of the Omicron variant, its subvariants, and the immune response dynamics of the naturally infected with the virus. Methods: Twelve subjects between 3-17 years old (yo), vaccinated with two doses of CoronaVac®, were followed and diagnosed as breakthrough cases starting 14 days after receiving the second dose. Total IgGs against different SARS-CoV-2 proteins and the neutralizing capacity of these antibodies after infection were measured in plasma. The activation of CD4+ and CD8+ T cells was evaluated in peripheral blood mononuclear cells stimulated with peptides derived from the proteins from the wild-type (WT) virus and Omicron subvariants by flow cytometry, as well as different cytokines secretion by a Multiplex assay. Results: 2 to 8 weeks post-infection, compared to 4 weeks after 2nd dose of vaccine, there was a 146.5-fold increase in neutralizing antibody titers against Omicron and a 38.7-fold increase against WT SARS-CoV-2. Subjects showed an increase in total IgG levels against the S1, N, M, and NSP8 proteins of the WT virus. Activated CD4+ T cells showed a significant increase in response to the BA.2 subvariant (p<0.001). Finally, the secretion of IL-2 and IFN-γ cytokines showed a discreet decrease trend after infection in some subjects. Conclusion: SARS-CoV-2 infection in the pediatric population vaccinated with an inactivated SARS-CoV-2 vaccine produced an increase in neutralizing antibodies against Omicron and increased specific IgG antibodies for different SARS-CoV-2 proteins. CD4+ T cell activation was also increased, suggesting a conserved cellular response against the Omicron subvariants, whereas Th1-type cytokine secretion tended to decrease. Clinical Trial Registration: clinicaltrials.gov #NCT04992260.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD4-Positivos , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Citocinas/imunologia , Citocinas/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Vacinação , Seguimentos
9.
Cell Host Microbe ; 32(2): 156-161.e3, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38211584

RESUMO

T cells are critical in mediating the early control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection. However, it remains unknown whether memory T cells can effectively cross-recognize new SARS-CoV-2 variants with a broad array of mutations, such as the emergent hypermutated BA.2.86 variant. Here, we report in two separate cohorts, including healthy controls and individuals with chronic lymphocytic leukemia, that SARS-CoV-2 spike-specific CD4+ and CD8+ T cells induced by prior infection or vaccination demonstrate resilient immune recognition of BA.2.86. In both cohorts, we found largely preserved SARS-CoV-2 spike-specific CD4+ and CD8+ T cell magnitudes against mutated spike epitopes of BA.2.86. Functional analysis confirmed that both cytokine expression and proliferative capacity of SARS-CoV-2 spike-specific T cells to BA.2.86-mutated spike epitopes are similarly sustained. In summary, our findings indicate that memory CD4+ and CD8+ T cells continue to provide cell-mediated immune recognition to highly mutated emerging variants such as BA.2.86.


Assuntos
COVID-19 , Células T de Memória , Humanos , Linfócitos T CD8-Positivos , SARS-CoV-2/genética , Epitopos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais
10.
PLOS Glob Public Health ; 4(4): e0002703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603677

RESUMO

We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Overall, in the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration: The study has been registered to the South African National Clinical Trial Registry (SANCTR): DOH-27-012022-7841. The approval letter from SANCTR has been provided in the up-loaded documents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa