Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 64: 174-180, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29478637

RESUMO

This manuscript reports results of combined computational chemistry and batch adsorption investigation of insensitive munition compounds, 2,4-dinitroanisole (DNAN), triaminotrinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (FOX-7) and nitroguanidine (NQ), and traditional munition compound 2,4,6-trinitrotoluene (TNT) on the surfaces of cellulose, cellulose triacetate, chitin and chitosan biopolymers. Cellulose, cellulose triacetate, chitin and chitosan were modeled as trimeric form of the linear chain of 4C1 chair conformation of ß-d-glucopyranos, its triacetate form, ß-N-acetylglucosamine and D-glucosamine, respectively, in the 1➔4 linkage. Geometries were optimized at the M062X functional level of the density functional theory (DFT) using the 6-31G(d,p) basis set in the gas phase and in the bulk water solution using the conductor-like polarizable continuum model (CPCM) approach. The nature of potential energy surfaces of the optimized geometries were ascertained through the harmonic vibrational frequency analysis. The basis set superposition error (BSSE) corrected interaction energies were obtained using the 6-311G(d,p) basis set at the same theoretical level. The computed BSSE in the gas phase was used to correct interaction energy in the bulk water solution. Computed and experimental results regarding the ability of considered surfaces in adsorbing the insensitive munitions compounds are discussed.


Assuntos
Substâncias Explosivas/química , Modelos Químicos , Adsorção , Anisóis/química , Celulose/análogos & derivados , Celulose/química , Quitina/química , Quitosana/química , Guanidinas/química , Nitrocompostos/química
2.
J Environ Manage ; 204(Pt 2): 775-782, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28416262

RESUMO

Laboratory studies were performed to test a novel reactive gas process for in-situ treatment of soils containing halogenated propanes or explosives. A soil column study, using a 5% ammonia-in-air mixture, established that the treatment process can increase soil pH from 7.5 to 10.2. Batch reactor experiments were performed to demonstrate contaminant destruction in sealed jars exposed to ammonia. Comparison of results from batch reactors that were, and were not, exposed to ammonia demonstrated reductions in concentrations of 1,2,3-trichloropropane (TCP), 1,3-dichloropropane (1,3-DCP), 1,2-dicholoropropane (1,2-DCP) and dibromochloropropane (DBCP) that ranged from 34 to 94%. Decreases in TCP concentrations at 23° C ranged from 37 to 65%, versus 89-94% at 62° C. A spiked soil column study was also performed using the same set of contaminants. The study showed a pH penetration distance of 30 cm in a 2.5 cm diameter soil column (with a pH increase from 8 to > 10), due to treatment via 5% ammonia gas at 1 standard cubic centimeter per minute (sccm) for 7 days. Batch reactor tests using explosives contaminated soils exhibited a 97% decrease in 2,4,6-trinitrotoluene (TNT), an 83% decrease in nitrobenzene, and a 6% decrease in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A biotransformation study was also performed to investigate whether growth of ammonia-oxidizing microorganisms could be stimulated via prolonged exposure of soil to ammonia. Over the course of the 283 day study, only a very small amount of nitrite generation was observed; indicating very limited ammonia monooxygenase activity. Overall, the data indicate that ammonia gas addition can be a viable approach for treating halogenated propanes and some types of explosives in soils.


Assuntos
Propano/análogos & derivados , Poluentes do Solo/química , Amônia , Substâncias Explosivas , Propano/química , Solo , Triazinas , Trinitrotolueno
3.
Bull Environ Contam Toxicol ; 96(6): 791-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26846314

RESUMO

Cyanobacterial/Harmful Algal Blooms are a major issue for lakes and reservoirs throughout the U.S.A. An effective destructive technology could be useful to protect sensitive areas, such as areas near water intakes. The study presented in this article explored the use of a reactor called the KRIA Water Treatment System. The reactor focuses on the injection of superoxide (O2 (-)), which is generated electrochemically from the atmosphere, into the water body. In addition, the injection process generates a significant amount of cavitation. The treatment process was tested in 190-L reactors spiked with water from cyanobacterial contaminated lakes. The treatment was very effective at destroying the predominant species of cyanobacteria, Microcystis aeruginosa, organic matter, and decreasing chlorophyll concentration. Microcystin toxin concentrations were also reduced. Data suggest that cavitation alone was an effective treatment, but the addition of superoxide improved performance, particularly regarding removal of cyanobacteria and reduction of microcystin concentration.


Assuntos
Cianobactérias/isolamento & purificação , Microcystis/isolamento & purificação , Superóxidos/química , Purificação da Água , Clorofila/análise , Proliferação Nociva de Algas , Lagos/química , Lagos/microbiologia , Microcistinas/análise
4.
Angew Chem Int Ed Engl ; 52(47): 12350-3, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24115399

RESUMO

Chemisorption of carbon dioxide by 1-ethyl-3-methylimidazolium acetate ([C2 mim][OAc]) provides a route to coagulate chitin and cellulose from [C2 mim][OAc] solutions without the use of high-boiling antisolvents (e.g., water or ethanol). The use of CO2 chemisorption as an alternative coagulating process has the potential to provide an economical and energy-efficient method for recycling the ionic liquid.


Assuntos
Dióxido de Carbono/química , Celulose/química , Quitina/química , Imidazóis/química , Líquidos Iônicos/química , Adsorção , Biomassa , Etanol/química , Soluções/química , Água/química
5.
Angew Chem Int Ed Engl ; 51(39): 9784-7, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22951971

RESUMO

Space-qualified lubricants: Graphene and graphene oxide (r-GO) can strongly improve the low-temperature performance of hypergolic ionic liquids by reduction of viscosity. Key to success is to match the graphene type to the specific ionic-liquid functionality.

6.
Chemosphere ; 300: 134583, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35427658

RESUMO

Water quality can be severely impacted by algal blooms alone, yet cyanotoxins, such as microcystin (MC), are potent underlying hazards produced by various species of cyanobacteria. Currently there is a need for environmentally compatible and economically viable media to address large scale application for HAB impacted waters. This study evaluated the interactions of chitosan/graphene (CSG) composites with three different species of cyanobacteria: Anabaena sp, Synechocystis sp, and Microcystis aeruginosa for both removal of algal optical density and toxins. Although results suggest that CSG has an algae dependent removal of density with a range of 40-90% removal, graphene/CSG is highly effective at MC toxin removal, removing >94% of MC-LR produced by Microcystis aeruginosa. Characterization by SEM and XRD revealed that 750 m2/g surface area graphene, imparts graphene morphology and functionality into the chitosan matrix surface, potentially enabling π-π interactions between graphene and the aromatic ring of microcystin. This proposed π-π removal mechanism of microcystin via the CSG chitosan biopolymer substrate offers a promising sustainable and selective media suitable for deployable treatment of HAB impacted waters.


Assuntos
Quitosana , Cianobactérias , Grafite , Microcystis , Proliferação Nociva de Algas , Toxinas Marinhas , Microcistinas/química
7.
ACS Omega ; 2(12): 8751-8759, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457405

RESUMO

Chitosan (CS)-graphene oxide (GO) composite films were fabricated, characterized, and evaluated as pressure-driven water filtration membranes. GO particles were incorporated into a chitosan polymer solution to form a suspension that was cast as a membrane via evaporative phase inversion allowing for scale-up for cross-flow testing conditions. Morphology and composition results for nano and granular GO in the CS matrix indicate that the particle size of GO impacts the internal membrane morphology as well as the structural order and the chemical composition. Performance of the membranes was evaluated with cationic and anionic organic probe molecules and revealed charge-dependent mechanisms of dye removal. The CSGO membranes had rejections of at least 95% for cationic methylene blue with mass balances obtained from measurements of the feed, concentrate, and permeate. This result suggests the dominant mechanism of removal is physical rejection for both GO particle sizes. For anionic methyl orange, the results indicate sorption as the dominant mechanism of removal, and performance is dependent on both GO particle size and time, with micrometer-scale GO removing 68-99% and nanometer-scale GO showing modest removal of 29-64%. The pure water flux for CSGO composite membranes ranged from 2-4.5 L/m2 h at a transmembrane pressure of 344 kPa (3.44 bar), with pure water permeance ranging from 5.8 × 10-3 to 0.01 L/m2 h kPa (0.58-1.3 L/m2 h bar). Based on the 41 µm membrane thickness obtained from microscopy, the hydraulic permeability ranged from 0.24-0.54 L µm/m2 h kPa (24.4-54.1 L µm/m2 h bar).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa