Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37111976

RESUMO

Three-dimensional bioprinting and especially extrusion-based printing as a most frequently employed method in this field is constantly evolving as a discipline in regenerative medicine and tissue engineering. However, the lack of relevant standardized analytics does not yet allow an easy comparison and transfer of knowledge between laboratories regarding newly developed bioinks and printing processes. This work revolves around the establishment of a standardized method, which enables the comparability of printed structures by controlling for the extrusion rate based on the specific flow behavior of each bioink. Furthermore, printing performance was evaluated by image-processing tools to verify the printing accuracy for lines, circles, and angles. In addition, and complementary to the accuracy metrics, a dead/live staining of embedded cells was performed to investigate the effect of the process on cell viability. Two bioinks, based on alginate and gelatin methacryloyl, which differed in 1% (w/v) alginate content, were tested for printing performance. The automated image processing tool reduced the analytical time while increasing reproducibility and objectivity during the identification of printed objects. During evaluation of the processing effect of the mixing of cell viability, NIH 3T3 fibroblasts were stained and analyzed after the mixing procedure and after the extrusion process using a flow cytometer, which evaluated a high number of cells. It could be observed that the small increase in alginate content made little difference in the printing accuracy but had a considerable strong effect on cell viability after both processing steps.

2.
Gels ; 9(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38131913

RESUMO

Gelatin methacryloyl (GelMA) is widely used for the formulation of hydrogels in diverse biotechnological applications. After the derivatization of raw gelatin, the degree of functionalization (DoF) is an attribute of particular interest as the functional residues are necessary for crosslinking. Despite progress in the optimization of the process found in the literature, a comparison of the effect of raw gelatin on the functionalization is challenging as various approaches are employed. In this work, the modification of gelatin was performed at room temperature (RT), and eight different gelatin products were employed. The DoF proved to be affected by the bloom strength and by the species of gelatin at an equal reactant ratio. Furthermore, batch-to-batch variability of the same gelatin source had an effect on the produced GelMA. Moreover, the elasticity of GelMA hydrogels depended on the DoF of the protein as well as on bloom strength and source of the raw material. Additionally, GelMA solutions were used for the microfluidic production of droplets and subsequent crosslinking to hydrogel. This process was developed as a single pipeline at RT using protein concentrations up to 20% (w/v). Droplet size was controlled by the ratio of the continuous to dispersed phase. The swelling behavior of hydrogel particles depended on the GelMA concentration.

3.
Biofabrication ; 16(1)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769669

RESUMO

The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis (IA) in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated IA proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established.


Assuntos
Bioimpressão , Humanos , Bioimpressão/métodos , Reprodutibilidade dos Testes , Alicerces Teciduais/química , Materiais Biocompatíveis , Impressão Tridimensional , Engenharia Tecidual/métodos
4.
Polymers (Basel) ; 14(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36559791

RESUMO

Gelatin and its derivatives contain cell adhesion moieties as well as sites that enable proteolytic degradation, thus allowing cellular proliferation and migration. The processing of gelatin to its derivatives and/or gelatin-containing products is challenged by its gelation below 30 ∘C. In this study, a novel strategy was developed for the dissolution and subsequent modification of gelatin to its derivative gelatin-methacryloyl (GelMA). This approach was based on the presence of urea in the buffer media, which enabled the processing at room temperature, i.e., lower than the sol-gel transition point of the gelatin solutions. The degree of functionalization was controlled by the ratio of reactant volume to the gelatin concentration. Hydrogels with tailored mechanical properties were produced by variations of the GelMA concentration and its degree of functionalization. Moreover, the biocompatibility of hydrogels was assessed and compared to hydrogels formulated with GelMA produced by the conventional method. NIH 3T3 fibroblasts were seeded onto hydrogels and the viability showed no difference from the control after a three-day incubation period.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa