RESUMO
Here, a phenomenon of efficient oxygen exchange between a silicon surface and a thin layer of tin dioxide during chemical vapor deposition is presented, which leads to a unique Sn:SiO2 layer. Under thermodynamic conditions in the temperature range of 725-735 °C, the formation of nanostructures with volcano-like shapes in "active" and "dormant" states are observed. Extensive characterization techniques, such as electron microscopy, X-ray diffraction, synchrotron radiation-based X-ray photoelectron, and X-ray absorption near-edge structure spectroscopy, are applied to study the formation. The mechanism is related to the oxygen retraction between tin(IV) oxide and silicon surface, leading to the thermodynamically unstable tin(II)oxide, which is immediately disproportionate to metallic Sn and SnO2 localized in the SiO2 matrix. The diffusion of metallic tin in the amorphous silicon oxide matrix leads to larger agglomerates of nanoparticles, which is similar to the formation of a magma chamber during the natural volcanic processes followed by magma eruption, which here is associated with the formation of depressions on the surface filled with metallic tin particles. This new effect contributes a new approach to the formation of functional composites but also inspires the development of unique Sn:SiO2 nanostructures for diverse application scenarios, such as thermal energy storage.
RESUMO
The beamline optics and endstations at branch B of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source are described. B07-B provides medium-flux X-rays in the range 45-2200â eV from a bending magnet source, giving access to local electronic structure for atoms of all elements from Li to Y. It has an endstation for high-throughput X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) measurements under ultrahigh-vacuum (UHV) conditions. B07-B has a second endstation dedicated to NEXAFS at pressures from UHV to ambient pressure (1â atm). The combination of these endstations permits studies of a wide range of interfaces and materials. The beamline and endstation designs are discussed in detail, as well as their performance and the commissioning process.
RESUMO
The electrochemical synthesis of hydrogen peroxide (H2 O2 ) via a two-electron (2 e- ) oxygen reduction reaction (ORR) process provides a promising alternative to replace the energy-intensive anthraquinone process. Herein, we develop a facile template-protected strategy to synthesize a highly active quinone-rich porous carbon catalyst for H2 O2 electrochemical production. The optimized PCC900 material exhibits remarkable activity and selectivity, of which the onset potential reaches 0.83â V vs. reversible hydrogen electrode in 0.1â M KOH and the H2 O2 selectivity is over 95 % in a wide potential range. Comprehensive synchrotron-based near-edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with electrocatalytic characterizations reveals the positive correlation between quinone content and 2 e- ORR performance. The effectiveness of chair-form quinone groups as the most efficient active sites is highlighted by the molecule-mimic strategy and theoretical analysis.
RESUMO
Photoelectron spectroscopy is a powerful characterisation tool for semiconductor surfaces and interfaces, providing in principle a correlation between the electronic band structure and surface chemistry along with quantitative parameters such as the electron affinity, interface potential, band bending and band offsets. However, measurements are often limited to ultrahigh vacuum and only the top few atomic layers are probed. The technique is seldom applied as an in situ probe of surface processing; information is usually provided before and after processing in a separate environment, leading to a reduction in reproducibility. Advances in instrumentation, in particular electron detection has enabled these limitations to be addressed, for example allowing measurement at near-ambient pressures and the in situ, real-time monitoring of surface processing and interface formation. A further limitation is the influence of the measurement method through irreversible chemical effects such as radiation damage during X-ray exposure and reversible physical effects such as the charging of low conductivity materials. For wide-gap semiconductors such as oxides and carbon-based materials, these effects can be compounded and severe. Here we show how real-time and near-ambient pressure photoelectron spectroscopy can be applied to identify and quantify these effects, using a gold alloy, gallium oxide and semiconducting diamond as examples. A small binding energy change due to thermal expansion is followed in real-time for the alloy while the two semiconductors show larger temperature-induced changes in binding energy that, although superficially similar, are identified as having different and multiple origins, related to surface oxygen bonding, surface band-bending and a room-temperature surface photovoltage. The latter affects the p-type diamond at temperatures up to 400 °C when exposed to X-ray, UV and synchrotron radiation and under UHV and 1 mbar of O2. Real-time monitoring and near-ambient pressure measurement with different excitation sources has been used to identify the mechanisms behind the observed changes in spectral parameters that are different for each of the three materials. Corrected binding energy values aid the completion of the energy band diagrams for these wide-gap semiconductors and provide protocols for surface processing to engineer key surface and interface parameters.
RESUMO
It is important to be able to identify the precise position of H-atoms in hydrogen bonding interactions to fully understand the effects on the structure and properties of organic crystals. Using a combination of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory (DFT) quantum chemistry calculations, we demonstrate the sensitivity of core-level X-ray spectroscopy to the precise H-atom position within a donor-proton-acceptor system. Exploiting this sensitivity, we then combine the predictive power of DFT with the experimental NEXAFS, confirming the H-atom position identified using single-crystal X-ray diffraction (XRD) techniques more easily than using other H-atom sensitive techniques, such as neutron diffraction. This proof of principle experiment confirms the H-atom positions in structures obtained from XRD, providing evidence for the potential use of NEXAFS as a more accurate and easier method of locating H-atoms within organic crystals.
RESUMO
Multiply bonded lanthanide oxo groups are rare in coordination compounds and have not previously been reported for a surface termination of a lanthanide oxide. Here we report the observation of a Ce=O terminated ceria surface in a CeO2 (111)-( 3 × 3 )R30° reconstruction of ≈3â nm thick ceria islands prepared on Pt(111). This is evidenced by scanning tunnelling microscopy (STM), low energy electron diffraction (LEED) and high-resolution electron energy loss spectroscopy (HREELS) measurements in conjunction with density functional theory (DFT) calculations. A Ce=O stretching frequency of 775â cm-1 is observed in HREELS, compared with 766â cm-1 calculated by DFT. The calculations also predict that the Ce=O bond is weak, with an oxygen vacancy formation energy of 0.85â eV. This could play an important role in the facile removal of lattice oxygen from CeO2 , accompanied by the reduction of CeIV to CeIII , which is a key attribute of ceria-based systems in connection with their unique catalytic properties.
RESUMO
The ambient-pressure endstation and branchline of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source serves a very diverse user community studying heterogeneous catalysts, pharmaceuticals and biomaterials under realistic conditions, liquids and ices, and novel electronic, photonic and battery materials. The instrument facilitates studies of the near-surface chemical composition, electronic and geometric structure of a variety of samples using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy in the photon energy range from 170â eV to 2800â eV. The beamline provides a resolving power hν/Δ(hν) > 5000 at a photon flux > 1010â photonsâ s-1 over most of its energy range. By operating the optical elements in a low-pressure oxygen atmosphere, carbon contamination can be almost completely eliminated, which makes the beamline particularly suitable for carbon K-edge NEXAFS. The endstation can be operated at pressures up to 100â mbar, whereby XPS can be routinely performed up to 30â mbar. A selection of typical data demonstrates the capability of the instrument to analyse details of the surface composition of solid samples under ambient-pressure conditions using XPS and NEXAFS. In addition, it offers a convenient way of analysing the gas phase through X-ray absorption spectroscopy. Short XPS spectra can be measured at a time scale of tens of seconds. The shortest data acquisition times for NEXAFS are around 0.5â s per data point.
RESUMO
The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH4 â CH3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy and density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. These findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.
RESUMO
Disorder-Order transitions in a weakly adsorbed two-dimensional film have been identified for the first time using ambient-pressure scanning tunneling microscopy (AP-STM) and X-ray photoelectron spectroscopy (AP-XPS). As of late, great effort has been devoted to the capture, activation and conversion of carbon dioxide (CO2), a ubiquitous greenhouse gas and by-product of many chemical processes. The high stability and non-polar nature of CO2 leads to weak bonding with well-defined surfaces of metals and oxides. CO2 adsorbs molecularly on the rutile TiO2(110) surface with a low adsorption energy of â¼10 kcal mol-1. In spite of this weak binding, images of AP-STM show that a substantial amount of CO2 can reside on a TiO2(110) surface at room temperature forming two-dimensionally ordered films. We have employed microscopic imaging under in situ conditions, soft X-ray spectroscopy and theory to decipher the unique ordering behavior seen for CO2 on TiO2(110).
RESUMO
Model metal/ceria and ceria/metal catalysts have been shown to be excellent systems for studying fundamental phenomena linked to the operation of technical catalysts. In the last fifteen years, many combinations of well-defined systems involving different kinds of metals and ceria have been prepared and characterized using the modern techniques of surface science. So far most of the catalytic studies have been centered on a few reactions: CO oxidation, the hydrogenation of CO2, and the production of hydrogen through the water-gas shift reaction and the reforming of methane or alcohols. Using model catalysts it has been possible to examine in detail correlations between the structural, electronic and catalytic properties of ceria-metal interfaces. In situ techniques (X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, infrared spectroscopy, scanning tunneling microscopy) have been combined to study the morphological changes under reaction conditions and investigate the evolution of active phases involved in the cleavage of C-O, C-H and C-C bonds. Several studies with model ceria catalysts have shown the importance of strong metal-support interactions. In general, a substantial body of knowledge has been acquired and concepts have been developed for a more rational approach to the design of novel technical catalysts containing ceria.
RESUMO
Studies with a series of metal/ceria(111) (metal=Co, Ni, Cu; ceria=CeO2 ) surfaces indicate that metal-oxide interactions can play a very important role for the activation of methane and its reforming with CO2 at relatively low temperatures (600-700â K). Among the systems examined, Co/CeO2 (111) exhibits the best performance and Cu/CeO2 (111) has negligible activity. Experiments using ambient pressure X-ray photoelectron spectroscopy indicate that methane dissociates on Co/CeO2 (111) at temperatures as low as 300â K-generating CHx and COx species on the catalyst surface. The results of density functional calculations show a reduction in the methane activation barrier from 1.07â eV on Co(0001) to 0.87â eV on Co2+ /CeO2 (111), and to only 0.05â eV on Co0 /CeO2-x (111). At 700â K, under methane dry reforming conditions, CO2 dissociates on the oxide surface and a catalytic cycle is established without coke deposition. A significant part of the CHx formed on the Co0 /CeO2-x (111) catalyst recombines to yield ethane or ethylene.
RESUMO
Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni-CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni(0)/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni(0) is the active phase leading to both C-C and C-H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce(3+)(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. The co-existence and cooperative interplay of Ni(0) and Ce(3+)(OH)x through a metal-support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.
RESUMO
Ni-CeO2 is a highly efficient, stable and non-expensive catalyst for methane dry reforming at relative low temperatures (700â K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300â K, generating CHx and COx species on the surface of the catalyst. Strong metal-support interactions activate Ni for the dissociation of methane. The results of density-functional calculations show a drop in the effective barrier for methane activation from 0.9â eV on Ni(111) to only 0.15â eV on Ni/CeO2-x (111). At 700â K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the Câ 1s XPS region. The reforming of methane proceeds in a clean and efficient way.
RESUMO
The cathode-electrolyte interphase (CEI) in Li-ion batteries plays a key role in suppressing undesired side reactions while facilitating Li-ion transport. Ni-rich layered cathode materials offer improved energy densities, but their high interfacial reactivities can negatively impact the cycle life and rate performance. Here we investigate the role of electrolyte salt concentration, specifically LiPF6 (0.5-5 m), in altering the interfacial reactivity of charged LiN0.8Mn0.1Co0.1O2 (NMC811) cathodes in standard carbonate-based electrolytes (EC/EMC vol %/vol % 3:7). Extended potential holds of NMC811/Li4Ti5O12 (LTO) cells reveal that the parasitic electrolyte oxidation currents observed are strongly dependent on the electrolyte salt concentration. X-ray photoelectron and absorption spectroscopy (XPS/XAS) reveal that a thicker LixPOyFz-/LiF-rich CEI is formed in the higher concentration electrolytes. This suppresses reactions with solvent molecules resulting in a thinner, or less-dense, reduced surface layer (RSL) with lower charge transfer resistance and lower oxidation currents at high potentials. The thicker CEI also limits access of acidic species to the RSL suppressing transition-metal dissolution into the electrolyte, as confirmed by nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES). This provides insight into the main degradation processes occurring at Ni-rich cathode interfaces in contact with carbonate-based electrolytes and how electrolyte formulation can help to mitigate these.
RESUMO
X-ray photoelectron spectroscopy (XPS) and ab initio calculations show that fully alkylated onium cation electronic structure can be tuned using both the alkyl chains and the central onium atom. The key for tuning the central onium atom is methyl versus longer alkyl chains, allowing selection of the optimum cation for a wide range of applications, including catalysis and biocides.
RESUMO
Amorphous porous boron nitride (BN) represents a versatile material platform with potential applications in adsorptive molecular separations and gas storage, as well as heterogeneous and photo-catalysis. Chemical doping can help tailor BN's sorptive, optoelectronic, and catalytic properties, eventually boosting its application performance. Phosphorus (P) represents an attractive dopant for amorphous BN as its electronic structure would allow the element to be incorporated into BN's structure, thereby impacting its adsorptive, optoelectronic, and catalytic activity properties, as a few studies suggest. Yet, a fundamental understanding is missing around the chemical environment(s) of P in P-doped BN, the effect of P-doping on the material features, and how doping varies with the synthesis route. Such a knowledge gap impedes the rational design of P-doped porous BN. Herein, we detail a strategy for the successful doping of P in BN (P-BN) using two different sources: phosphoric acid and an ionic liquid. We characterized the samples using analytical and spectroscopic tools and tested them for CO2 adsorption and photoreduction. Overall, we show that P forms P-N bonds in BN akin to those in phosphazene. P-doping introduces further chemical/structural defects in BN's structure, and hence more/more populated midgap states. The selection of P source affects the chemical, adsorptive, and optoelectronic properties, with phosphoric acid being the best option as it reacts more easily with the other precursors and does not contain C, hence leading to fewer reactions and C impurities. P-doping increases the ultramicropore volume and therefore CO2 uptake. It significantly shifts the optical absorption of BN into the visible and increases the charge carrier lifetimes. However, to ensure that these charges remain reactive toward CO2 photoreduction, additional materials modification strategies should be explored in future work. These strategies could include the use of surface cocatalysts that can decrease the kinetic barriers to driving this chemistry.
RESUMO
Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O2 has been identified within LiNiO2 at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO2 occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O2. Instead, trapped O2 is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O2 is removed on discharge, but excess Ni2+ persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO2 in contact with the electrolyte in surface degradation through O2 formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO2 degradation.
RESUMO
Conversion of plastic wastes to valuable carbon resources without using noble metal catalysts or external hydrogen remains a challenging task. Here we report a layered self-pillared zeolite that enables the conversion of polyethylene to gasoline with a remarkable selectivity of 99% and yields of >80% in 4 h at 240 °C. The liquid product is primarily composed of branched alkanes (selectivity of 72%), affording a high research octane number of 88.0 that is comparable to commercial gasoline (86.6). In situ inelastic neutron scattering, small-angle neutron scattering, solid-state nuclear magnetic resonance, X-ray absorption spectroscopy and isotope-labelling experiments reveal that the activation of polyethylene is promoted by the open framework tri-coordinated Al sites of the zeolite, followed by ß-scission and isomerization on Brönsted acids sites, accompanied by hydride transfer over open framework tri-coordinated Al sites through a self-supplied hydrogen pathway to yield selectivity to branched alkanes. This study shows the potential of layered zeolite materials in enabling the upcycling of plastic wastes.
RESUMO
Nanoscale interconnects are an important component of molecular electronics. Here we use X-ray spectromicroscopy techniques as well as scanning probe methods to explore the self-assembled growth of insulated iron nanowires as a potential means of supplying an earth abundant solution. The intrinsic anisotropy of a TiO2(110) substrate directs the growth of micron length iron wires at elevated temperatures, with a strong metal-support interaction giving rise to ilmenite (FeTiO3) encapsulation. Iron nanoparticles that decorate the nanowires display magnetic properties that suggest other possible applications.
RESUMO
As a key component in many industrial heterogeneous catalysts, the surface structure and reactivity of ceria, CeO2, has attracted a lot of attention. In this topical review we discuss some of the approaches taken to form a deeper understanding of the surface physics and chemistry of this important and interesting material. In particular, we focus on the preparation of ultrathin ceria films, nanostructures and supported metal nanoparticles. Cutting-edge microscopic and spectroscopic experimental techniques are highlighted which can probe the behaviour of oxygen species and atomic defects on these model surfaces.