Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 88(11): 6061-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623442

RESUMO

UNLABELLED: Retroviral virions initially assemble in an immature form that differs from that of the mature infectious particle. The RNA genomes in both immature and infectious particles are dimers, and interactions between the RNA dimer and the viral Gag protein ensure selective packaging into nascent immature virions. We used high-sensitivity selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) to obtain nucleotide-resolution structural information from scarce, femtomole quantities of Moloney murine leukemia virus (MuLV) RNA inside authentic virions and from viral RNA extracted from immature (protease-minus) virions. Our secondary structure model of the dimerization and packaging domain indicated that a stable intermolecular duplex known as PAL2, previously shown to be present in mature infectious MuLV particles, was sequestered in an alternate stem-loop structure inside immature virions. The intermediate state corresponded closely to a late-folding intermediate that we detected in time-resolved studies of the free MuLV RNA, suggesting that the immature RNA structure reflects trapping of the intermediate folding state by interactions in the immature virion. We propose models for the RNA-protein interactions that trap the RNA in the immature state and for the conformational rearrangement that occurs during maturation of virion particles. IMPORTANCE: The structure of the RNA genome in mature retroviruses has been studied extensively, whereas very little was known about the RNA structure in immature virions. The immature RNA structure is important because it is the form initially selected for packaging in new virions and may have other roles. This lack of information was due to the difficulty of isolating sufficient viral RNA for study. In this work, we apply a high-sensitivity and nucleotide-resolution approach to examine the structure of the dimerization and packaging domain of Moloney murine leukemia virus. We find that the genomic RNA is packaged in a high-energy state, suggesting that interactions within the virion hold or capture the RNA before it reaches its most stable state. This new structural information makes it possible to propose models for the conformational changes in the RNA genome that accompany retroviral maturation.


Assuntos
Genoma Viral/genética , Modelos Moleculares , Vírus da Leucemia Murina de Moloney/genética , RNA Viral/genética , Vírion/genética , Acilação , Primers do DNA/genética , Dimerização , Eletroforese Capilar , Vírion/crescimento & desenvolvimento
2.
J Am Chem Soc ; 133(50): 20326-34, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22126209

RESUMO

Higher-order structure influences critical functions in nearly all noncoding and coding RNAs. Most single-nucleotide resolution RNA structure determination technologies cannot be used to analyze RNA from scarce biological samples, like viral genomes. To make quantitative RNA structure analysis applicable to a much wider array of RNA structure-function problems, we developed and applied high-sensitivity selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) to structural analysis of authentic genomic RNA of the xenotropic murine leukemia virus-related virus (XMRV). For analysis of fluorescently labeled cDNAs generated in high-sensitivity SHAPE experiments, we developed a two-color capillary electrophoresis approach with zeptomole molecular detection limits and subfemtomole sensitivity for complete SHAPE experiments involving hundreds of individual RNA structure measurements. High-sensitivity SHAPE data correlated closely (R = 0.89) with data obtained by conventional capillary electrophoresis. Using high-sensitivity SHAPE, we determined the dimeric structure of the XMRV packaging domain, examined dynamic interactions between the packaging domain RNA and viral nucleocapsid protein inside virion particles, and identified the packaging signal for this virus. Despite extensive sequence differences between XMRV and the intensively studied Moloney murine leukemia virus, architectures of the regulatory domains are similar and reveal common principles of gammaretrovirus RNA genome packaging.


Assuntos
Genoma Viral , Vírus da Leucemia Murina/genética , Conformação de Ácido Nucleico , RNA Viral/genética , Acetilação , Sequência de Bases , Eletroforese Capilar , Dados de Sequência Molecular , RNA Viral/química
3.
J Mol Biol ; 430(17): 2760-2783, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29913158

RESUMO

The thermostable Geobacillus stearothermophilus GsI-IIC intron is among the few bacterial group II introns found to proliferate to high copy number in its host genome. Here, we developed a bacterial genetic assay for retrohoming and biochemical assays for protein-dependent and self-splicing of GsI-IIC. We found that GsI-IIC, like other group IIC introns, retrohomes into sites having a 5'-exon DNA hairpin, typically from a bacterial transcription terminator, followed by short intron-binding sequences (IBSs) recognized by base pairing of exon-binding sequences (EBSs) in the intron RNA. Intron RNA insertion occurs preferentially but not exclusively into the parental lagging strand at DNA replication forks, using a nascent lagging strand DNA as a primer for reverse transcription. In vivo mobility assays, selections, and mutagenesis indicated that a variety of GC-rich DNA hairpins of 7-19 bp with continuous base pairs or internal elbow regions support efficient intron mobility and identified a critically recognized nucleotide (T-5) between the hairpin and IBS1, a feature not reported previously for group IIC introns. Neither the hairpin nor T-5 is required for intron excision or lariat formation during RNA splicing, but the 5'-exon sequence can affect the efficiency of exon ligation. Structural modeling suggests that the 5'-exon DNA hairpin and T-5 bind to the thumb and DNA-binding domains of GsI-IIC reverse transcriptase. This mode of DNA target site recognition enables the intron to proliferate to high copy number by recognizing numerous transcription terminators and then finding the best match for the EBS/IBS interactions within a short distance downstream.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Geobacillus stearothermophilus/genética , Íntrons/genética , Mutação , Splicing de RNA , Proteínas de Bactérias/genética , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Replicação do DNA , Éxons , Conformação de Ácido Nucleico , Transcrição Gênica
4.
Science ; 340(6129): 190-5, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23470731

RESUMO

RNA chaperones are ubiquitous, heterogeneous proteins essential for RNA structural biogenesis and function. We investigated the mechanism of chaperone-mediated RNA folding by following the time-resolved dimerization of the packaging domain of a retroviral RNA at nucleotide resolution. In the absence of the nucleocapsid (NC) chaperone, dimerization proceeded through multiple, slow-folding intermediates. In the presence of NC, dimerization occurred rapidly through a single structural intermediate. The RNA binding domain of heterogeneous nuclear ribonucleoprotein A1 protein, a structurally unrelated chaperone, also accelerated dimerization. Both chaperones interacted primarily with guanosine residues. Replacing guanosine with more weakly pairing inosine yielded an RNA that folded rapidly without a facilitating chaperone. These results show that RNA chaperones can simplify RNA folding landscapes by weakening intramolecular interactions involving guanosine and explain many RNA chaperone activities.


Assuntos
Guanosina/metabolismo , Chaperonas Moleculares/metabolismo , Vírus da Leucemia Murina de Moloney/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/química , Sequência de Bases , Dimerização , Guanosina/química , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Inosina/química , Inosina/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Vírus da Leucemia Murina de Moloney/genética , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/química , Ligação Proteica , RNA Viral/metabolismo
5.
Biochemistry ; 46(11): 3013-22, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17311413

RESUMO

The DEAD-box protein CYT-19 functions in the folding of several group I introns in vivo and a diverse set of group I and group II RNAs in vitro. Recent work using the Tetrahymena group I ribozyme demonstrated that CYT-19 possesses a second RNA-binding site, distinct from the unwinding active site, which enhances unwinding activity by binding nonspecifically to the adjacent RNA structure. Here, we probe the region of CYT-19 responsible for that binding by constructing a C-terminal truncation variant that lacks 49 amino acids and terminates at a domain boundary, as defined by limited proteolysis. This truncated protein unwinds a six-base-pair duplex, formed between the oligonucleotide substrate of the Tetrahymena ribozyme and an oligonucleotide corresponding to the internal guide sequence of the ribozyme, with near-wild-type efficiency. However, the truncated protein is activated much less than the wild-type protein when the duplex is covalently linked to the ribozyme or single-stranded or double-stranded extensions. Thus, the active site for RNA unwinding remains functional in the truncated CYT-19, but the site that binds the adjacent RNA structure has been compromised. Equilibrium binding experiments confirmed that the truncated protein binds RNA less tightly than the wild-type protein. RNA binding by the compromised site is important for chaperone activity, because the truncated protein is less active in facilitating the folding of a group I intron that requires CYT-19 in vivo. The deleted region contains arginine-rich sequences, as found in other RNA-binding proteins, and may function by tethering CYT-19 to structured RNAs, so that it can efficiently disrupt exposed, non-native structural elements, allowing them to refold. Many other DExD/H-box proteins also contain arginine-rich ancillary domains, and some of these domains may function similarly as nonspecific RNA-binding elements that enhance general RNA chaperone activity.


Assuntos
RNA Helicases DEAD-box/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Protozoários/metabolismo , RNA Catalítico/metabolismo , RNA/metabolismo , Tetrahymena thermophila/enzimologia , Animais , Sequência de Bases , Sítios de Ligação , Conformação de Ácido Nucleico , Papaína/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa