Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bone ; 66: 155-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24947449

RESUMO

Neurofibromin has been identified as a critical regulator of osteoblast differentiation. Osteoblast specific inactivation of neurofibromin in mice results in a high bone mass phenotype and hyperosteoidosis. Here, we show that inactivation of the Nf1 gene also impairs osteocyte development. We analyzed cortical bone tissue in two conditional mouse models, Nf1Prx1 and Nf1Col1, for morphological and molecular effects. Backscattered electron microscopy revealed significantly enlarged osteocyte lacunae in Nf1Prx1 and Nf1Col1 mice (level E2: ctrl=1.90±0.52%, Nf1Prx1=3.40±0.95%; ctrl 1.60±0.47%, Nf1Col1 2.46±0.91%). Moreover, the osteocyte lacunae appeared misshaped in Nf1Prx1 and Nf1Col1 mice as indicated by increased Feret ratios. Strongest osteocyte and dendritic network disorganization was observed in proximity of muscle attachment sites in Nf1Prx1 humeri. In contrast to control cells, Nf1Prx1 osteocytes contained abundant cytosolic vacuoles and accumulated immature organic matrix within the perilacunar space, a phenotype reminiscent of the hyperosteoidosis shown Nf1 deficient mice. Cortical bone lysates further revealed approx. twofold upregulated MAPK signalling in osteocytes of Nf1Prx1 mice. This was associated with transcriptional downregulation of collagens and genes involved in mechanical sensing in Nf1Prx1 and Nf1Col1 bone tissue. In contrast, matrix gla protein (MGP), phosphate regulating endopeptidase homolog, X-linked (PHEX), and genes involved in lipid metabolism were upregulated. In line with previously described hyperactivation of Nf1 deficient osteoblasts, systemic plasma levels of the bone formation markers osteocalcin (OCN) and procollagen typ I N-propeptide (PINP) were approx. twofold increased in Nf1Prx1 mice. Histochemical and molecular analysis ascertained that osteocytes in Nf1Prx1 cortical bone were viable and did not undergo apoptosis or autophagy. We conclude that loss of neurofibromin is not only critical for osteoblasts but also hinders normal osteocyte development. These findings expand the effect of neurofibromin onto yet another cell type where it is likely involved in the regulation of mechanical sensing, bone matrix composition and mechanical resistance of bone tissue.


Assuntos
Neurofibromina 1/metabolismo , Osteócitos/metabolismo , Osteócitos/patologia , Animais , Calcificação Fisiológica/genética , Forma Celular , Sobrevivência Celular , Metabolismo Energético , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Úmero/patologia , Camundongos , Camundongos Mutantes , Modelos Animais , Neurofibromina 1/deficiência , Osteócitos/ultraestrutura , Estresse Mecânico , Transcrição Gênica
2.
PLoS One ; 9(1): e86115, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465906

RESUMO

Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions.


Assuntos
Matriz Óssea/patologia , Matriz Óssea/fisiopatologia , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Calcificação Fisiológica , Neurofibromatose 1/patologia , Neurofibromatose 1/fisiopatologia , Animais , Fenômenos Biomecânicos , Vasos Sanguíneos/patologia , Densidade Óssea , Osso e Ossos/irrigação sanguínea , Colágeno/metabolismo , Diáfises/irrigação sanguínea , Diáfises/metabolismo , Diáfises/patologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Neurofibromina 1/deficiência , Neurofibromina 1/metabolismo , Osteócitos/metabolismo , Osteócitos/patologia , Porosidade , Tíbia/patologia , Tíbia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa