Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Integr Neurosci ; 20(1): 197-232, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33834707

RESUMO

This article describes neural models of attention. Since attention is not a disembodied process, the article explains how brain processes of consciousness, learning, expectation, attention, resonance, and synchrony interact. These processes show how attention plays a critical role in dynamically stabilizing perceptual and cognitive learning throughout our lives. Classical concepts of object and spatial attention are replaced by mechanistically precise processes of prototype, boundary, and surface attention. Adaptive resonances trigger learning of bottom-up recognition categories and top-down expectations that help to classify our experiences, and focus prototype attention upon the patterns of critical features that predict behavioral success. These feature-category resonances also maintain the stability of these learned memories. Different types of resonances induce functionally distinct conscious experiences during seeing, hearing, feeling, and knowing that are described and explained, along with their different attentional and anatomical correlates within different parts of the cerebral cortex. All parts of the cerebral cortex are organized into layered circuits. Laminar computing models show how attention is embodied within a canonical laminar neocortical circuit design that integrates bottom-up filtering, horizontal grouping, and top-down attentive matching. Spatial and motor processes obey matching and learning laws that are computationally complementary to those obeyed by perceptual and cognitive processes. Their laws adapt to bodily changes throughout life, and do not support attention or conscious states.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Estado de Consciência/fisiologia , Aprendizagem/fisiologia , Modelos Teóricos , Humanos
2.
Cogn Affect Behav Neurosci ; 17(1): 24-76, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27905080

RESUMO

How do the hippocampus and amygdala interact with thalamocortical systems to regulate cognitive and cognitive-emotional learning? Why do lesions of thalamus, amygdala, hippocampus, and cortex have differential effects depending on the phase of learning when they occur? In particular, why is the hippocampus typically needed for trace conditioning, but not delay conditioning, and what do the exceptions reveal? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later do not? Why do thalamic or sensory cortical lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions during trace conditioning experiments degrade recent but not temporally remote learning? Why do orbitofrontal cortical lesions degrade temporally remote but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of prefrontal cortex after memory consolidation? How are attention and consciousness linked during conditioning? How do neurotrophins, notably brain-derived neurotrophic factor (BDNF), influence memory formation and consolidation? Is there a common output path for learned performance? A neural model proposes a unified answer to these questions that overcome problems of alternative memory models.


Assuntos
Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Modelos Neurológicos , Adaptação Psicológica/fisiologia , Amnésia/fisiopatologia , Tonsila do Cerebelo/fisiologia , Animais , Piscadela/fisiologia , Córtex Cerebral/fisiologia , Condicionamento Psicológico/fisiologia , Estado de Consciência/fisiologia , Retroalimentação , Hipocampo/fisiologia , Humanos , Fatores de Crescimento Neural/metabolismo , Vias Neurais/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia
3.
J Acoust Soc Am ; 140(2): 1130, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27586743

RESUMO

Magnuson [J. Acoust. Soc. Am. 137, 1481-1492 (2015)] makes claims for Interactive Activation (IA) models and against Adaptive Resonance Theory (ART) models of speech perception. Magnuson also presents simulations that claim to show that the TRACE model can simulate phonemic restoration, which was an explanatory target of the cARTWORD ART model. The theoretical analysis and review herein show that these claims are incorrect. More generally, the TRACE and cARTWORD models illustrate two diametrically opposed types of neural models of speech and language. The TRACE model embodies core assumptions with no analog in known brain processes. The cARTWORD model defines a hierarchy of cortical processing regions whose networks embody cells in laminar cortical circuits as part of the paradigm of laminar computing. cARTWORD further develops ART speech and language models that were introduced in the 1970s. It builds upon Item-Order-Rank working memories, which activate learned list chunks that unitize sequences to represent phonemes, syllables, and words. Psychophysical and neurophysiological data support Item-Order-Rank mechanisms and contradict TRACE representations of time, temporal order, silence, and top-down processing that exhibit many anomalous properties, including hallucinations of non-occurring future phonemes. Computer simulations of the TRACE model are presented that demonstrate these failures.


Assuntos
Modelos Neurológicos , Percepção da Fala/fisiologia , Fala/fisiologia , Encéfalo/fisiologia , Humanos , Idioma , Memória
4.
Behav Brain Sci ; 39: e75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27561607

RESUMO

Christiansen & Chater's (C&C's) key goals for a language system have been realized by neural models for short-term storage of linguistic items in an Item-Order-Rank working memory, which inputs to Masking Fields that rapidly learn to categorize, or chunk, variable-length linguistic sequences, and choose the contextually most predictive list chunks while linguistic inputs are stored in the working memory.


Assuntos
Aprendizagem , Memória de Curto Prazo , Humanos , Idioma
5.
PLoS Comput Biol ; 8(10): e1002648, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055909

RESUMO

Place cells in the hippocampus of higher mammals are critical for spatial navigation. Recent modeling clarifies how this may be achieved by how grid cells in the medial entorhinal cortex (MEC) input to place cells. Grid cells exhibit hexagonal grid firing patterns across space in multiple spatial scales along the MEC dorsoventral axis. Signals from grid cells of multiple scales combine adaptively to activate place cells that represent much larger spaces than grid cells. But how do grid cells learn to fire at multiple positions that form a hexagonal grid, and with spatial scales that increase along the dorsoventral axis? In vitro recordings of medial entorhinal layer II stellate cells have revealed subthreshold membrane potential oscillations (MPOs) whose temporal periods, and time constants of excitatory postsynaptic potentials (EPSPs), both increase along this axis. Slower (faster) subthreshold MPOs and slower (faster) EPSPs correlate with larger (smaller) grid spacings and field widths. A self-organizing map neural model explains how the anatomical gradient of grid spatial scales can be learned by cells that respond more slowly along the gradient to their inputs from stripe cells of multiple scales, which perform linear velocity path integration. The model cells also exhibit MPO frequencies that covary with their response rates. The gradient in intrinsic rhythmicity is thus not compelling evidence for oscillatory interference as a mechanism of grid cell firing. A response rate gradient combined with input stripe cells that have normalized receptive fields can reproduce all known spatial and temporal properties of grid cells along the MEC dorsoventral axis. This spatial gradient mechanism is homologous to a gradient mechanism for temporal learning in the lateral entorhinal cortex and its hippocampal projections. Spatial and temporal representations may hereby arise from homologous mechanisms, thereby embodying a mechanistic "neural relativity" that may clarify how episodic memories are learned.


Assuntos
Córtex Entorrinal/citologia , Hipocampo/citologia , Modelos Neurológicos , Animais , Biologia Computacional , Potenciais da Membrana/fisiologia , Redes Neurais de Computação , Ratos , Percepção Espacial , Percepção do Tempo
6.
Front Psychol ; 14: 1216479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37599779

RESUMO

This article describes a biological neural network model that can be used to explain how children learn to understand language meanings about the perceptual and affective events that they consciously experience. This kind of learning often occurs when a child interacts with an adult teacher to learn language meanings about events that they experience together. Multiple types of self-organizing brain processes are involved in learning language meanings, including processes that control conscious visual perception, joint attention, object learning and conscious recognition, cognitive working memory, cognitive planning, emotion, cognitive-emotional interactions, volition, and goal-oriented actions. The article shows how all of these brain processes interact to enable the learning of language meanings to occur. The article also contrasts these human capabilities with AI models such as ChatGPT. The current model is called the ChatSOME model, where SOME abbreviates Self-Organizing MEaning.

7.
J Cogn Neurosci ; 24(5): 1031-54, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22288394

RESUMO

Spatial learning and memory are important for navigation and formation of episodic memories. The hippocampus and medial entorhinal cortex (MEC) are key brain areas for spatial learning and memory. Place cells in hippocampus fire whenever an animal is located in a specific region in the environment. Grid cells in the superficial layers of MEC provide inputs to place cells and exhibit remarkable regular hexagonal spatial firing patterns. They also exhibit a gradient of spatial scales along the dorsoventral axis of the MEC, with neighboring cells at a given dorsoventral location having different spatial phases. A neural model shows how a hierarchy of self-organizing maps, each obeying the same laws, responds to realistic rat trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with unimodal firing fields that fit neurophysiological data about their development in juvenile rats. The hippocampal place fields represent much larger spaces than the grid cells to support navigational behaviors. Both the entorhinal and hippocampal self-organizing maps amplify and learn to categorize the most energetic and frequent co-occurrences of their inputs. Top-down attentional mechanisms from hippocampus to MEC help to dynamically stabilize these spatial memories in both the model and neurophysiological data. Spatial learning through MEC to hippocampus occurs in parallel with temporal learning through lateral entorhinal cortex to hippocampus. These homologous spatial and temporal representations illustrate a kind of "neural relativity" that may provide a substrate for episodic learning and memory.


Assuntos
Córtex Entorrinal/citologia , Hipocampo/citologia , Aprendizagem/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Percepção Espacial/fisiologia , Animais , Comunicação Celular , Simulação por Computador , Humanos , Vias Neurais/fisiologia , Ratos
8.
Hippocampus ; 22(2): 320-34, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21136517

RESUMO

Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation.


Assuntos
Córtex Entorrinal/fisiologia , Modelos Neurológicos , Modelos Teóricos , Redes Neurais de Computação , Neurônios/fisiologia , Percepção Espacial/fisiologia , Algoritmos , Humanos , Aprendizagem
9.
Hippocampus ; 22(12): 2219-37, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22707350

RESUMO

Effective navigation depends upon reliable estimates of head direction (HD). Visual, vestibular, and outflow motor signals combine for this purpose in a brain system that includes dorsal tegmental nucleus, lateral mammillary nuclei, anterior dorsal thalamic nucleus, and the postsubiculum. Learning is needed to combine such different cues to provide reliable estimates of HD. A neural model is developed to explain how these three types of signals combine adaptively within the above brain regions to generate a consistent and reliable HD estimate, in both light and darkness, which explains the following experimental facts. Each HD cell is tuned to a preferred head direction. The cell's firing rate is maximal at the preferred direction and decreases as the head turns from the preferred direction. The HD estimate is controlled by the vestibular system when visual cues are not available. A well-established visual cue anchors the cell's preferred direction when the cue is in the animal's field of view. Distal visual cues are more effective than proximal cues for anchoring the preferred direction. The introduction of novel cues in either a novel or familiar environment can gain control over a cell's preferred direction within minutes. Turning out the lights or removing all familiar cues does not change the cell's firing activity, but it may accumulate a drift in the cell's preferred direction. The anticipated time interval (ATI) of the HD estimate is greater in early processing stages of the HD system than at later stages. The model contributes to an emerging unified neural model of how multiple processing stages in spatial navigation, including postsubiculum head direction cells, entorhinal grid cells, and hippocampal place cells, are calibrated through learning in response to multiple types of signals as an animal navigates in the world.


Assuntos
Encéfalo/fisiologia , Sinais (Psicologia) , Aprendizagem/fisiologia , Modelos Neurológicos , Orientação/fisiologia , Comportamento Espacial/fisiologia , Animais , Inteligência Artificial , Cabeça/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Ratos
10.
J Comput Neurosci ; 32(2): 253-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21779754

RESUMO

Recurrent networks are ubiquitous in the brain, where they enable a diverse set of transformations during perception, cognition, emotion, and action. It has been known since the 1970's how, in rate-based recurrent on-center off-surround networks, the choice of feedback signal function can control the transformation of input patterns into activity patterns that are stored in short term memory. A sigmoid signal function may, in particular, control a quenching threshold below which inputs are suppressed as noise and above which they may be contrast enhanced before the resulting activity pattern is stored. The threshold and slope of the sigmoid signal function determine the degree of noise suppression and of contrast enhancement. This article analyses how sigmoid signal functions and their shape may be determined in biophysically realistic spiking neurons. Combinations of fast, medium, and slow after-hyperpolarization (AHP) currents, and their modulation by acetylcholine (ACh), can control sigmoid signal threshold and slope. Instead of a simple gain in excitability that was previously attributed to ACh, cholinergic modulation may cause translation of the sigmoid threshold. This property clarifies how activation of ACh by basal forebrain circuits, notably the nucleus basalis of Meynert, may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract information, as predicted by Adaptive Resonance Theory.


Assuntos
Acetilcolina/metabolismo , Potenciais de Ação/fisiologia , Córtex Cerebral/citologia , Modelos Neurológicos , Neurônios/fisiologia , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Retroalimentação Fisiológica/fisiologia , Humanos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos
11.
Cogn Psychol ; 65(1): 77-117, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22425615

RESUMO

How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued locations? What factors underlie individual differences in the timing and frequency of such attentional shifts? How do transient and sustained spatial attentional mechanisms work and interact? How can volition, mediated via the basal ganglia, influence the span of spatial attention? A neural model is developed of how spatial attention in the where cortical stream coordinates view-invariant object category learning in the what cortical stream under free viewing conditions. The model simulates psychological data about the dynamics of covert attention priming and switching requiring multifocal attention without eye movements. The model predicts how "attentional shrouds" are formed when surface representations in cortical area V4 resonate with spatial attention in posterior parietal cortex (PPC) and prefrontal cortex (PFC), while shrouds compete among themselves for dominance. Winning shrouds support invariant object category learning, and active surface-shroud resonances support conscious surface perception and recognition. Attentive competition between multiple objects and cues simulates reaction-time data from the two-object cueing paradigm. The relative strength of sustained surface-driven and fast-transient motion-driven spatial attention controls individual differences in reaction time for invalid cues. Competition between surface-driven attentional shrouds controls individual differences in detection rate of peripheral targets in useful-field-of-view tasks. The model proposes how the strength of competition can be mediated, though learning or momentary changes in volition, by the basal ganglia. A new explanation of crowding shows how the cortical magnification factor, among other variables, can cause multiple object surfaces to share a single surface-shroud resonance, thereby preventing recognition of the individual objects.


Assuntos
Atenção , Modelos Psicológicos , Percepção Espacial , Sinais (Psicologia) , Movimentos Oculares , Humanos , Aprendizagem , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia
12.
Front Syst Neurosci ; 16: 766239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465193

RESUMO

A neural network architecture models how humans learn and consciously perform musical lyrics and melodies with variable rhythms and beats, using brain design principles and mechanisms that evolved earlier than human musical capabilities, and that have explained and predicted many kinds of psychological and neurobiological data. One principle is called factorization of order and rhythm: Working memories store sequential information in a rate-invariant and speaker-invariant way to avoid using excessive memory and to support learning of language, spatial, and motor skills. Stored invariant representations can be flexibly performed in a rate-dependent and speaker-dependent way under volitional control. A canonical working memory design stores linguistic, spatial, motoric, and musical sequences, including sequences with repeated words in lyrics, or repeated pitches in songs. Stored sequences of individual word chunks and pitch chunks are categorized through learning into lyrics chunks and pitches chunks. Pitches chunks respond selectively to stored sequences of individual pitch chunks that categorize harmonics of each pitch, thereby supporting tonal music. Bottom-up and top-down learning between working memory and chunking networks dynamically stabilizes the memory of learned music. Songs are learned by associatively linking sequences of lyrics and pitches chunks. Performance begins when list chunks read word chunk and pitch chunk sequences into working memory. Learning and performance of regular rhythms exploits cortical modulation of beats that are generated in the basal ganglia. Arbitrary performance rhythms are learned by adaptive timing circuits in the cerebellum interacting with prefrontal cortex and basal ganglia. The same network design that controls walking, running, and finger tapping also generates beats and the urge to move with a beat.

13.
J Acoust Soc Am ; 130(1): 440-60, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21786911

RESUMO

How are laminar circuits of neocortex organized to generate conscious speech and language percepts? How does the brain restore information that is occluded by noise, or absent from an acoustic signal, by integrating contextual information over many milliseconds to disambiguate noise-occluded acoustical signals? How are speech and language heard in the correct temporal order, despite the influence of contexts that may occur many milliseconds before or after each perceived word? A neural model describes key mechanisms in forming conscious speech percepts, and quantitatively simulates a critical example of contextual disambiguation of speech and language; namely, phonemic restoration. Here, a phoneme deleted from a speech stream is perceptually restored when it is replaced by broadband noise, even when the disambiguating context occurs after the phoneme was presented. The model describes how the laminar circuits within a hierarchy of cortical processing stages may interact to generate a conscious speech percept that is embodied by a resonant wave of activation that occurs between acoustic features, acoustic item chunks, and list chunks. Chunk-mediated gating allows speech to be heard in the correct temporal order, even when what is heard depends upon future context.


Assuntos
Córtex Auditivo/fisiologia , Estado de Consciência , Idioma , Modelos Neurológicos , Neocórtex/fisiologia , Ruído/efeitos adversos , Mascaramento Perceptivo , Percepção da Fala , Estimulação Acústica , Simulação por Computador , Humanos , Memória , Fatores de Tempo
14.
Cogn Neurosci ; 12(2): 69-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33136518

RESUMO

Adaptive Resonance Theory does more than satisfy 'hard criteria' for ToCs.


Assuntos
Processos Mentais , Modelos Psicológicos , Estado de Consciência , Emoções , Audição , Humanos , Visão Ocular
15.
Front Syst Neurosci ; 15: 665052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994965

RESUMO

This article describes a neural model of the anatomy, neurophysiology, and functions of intrinsic and extrinsic theta rhythms in the brains of multiple species. Topics include how theta rhythms were discovered; how theta rhythms organize brain information processing into temporal series of spatial patterns; how distinct theta rhythms occur within area CA1 of the hippocampus and between the septum and area CA3 of the hippocampus; what functions theta rhythms carry out in different brain regions, notably CA1-supported functions like learning, recognition, and memory that involve visual, cognitive, and emotional processes; how spatial navigation, adaptively timed learning, and category learning interact with hippocampal theta rhythms; how parallel cortical streams through the lateral entorhinal cortex (LEC) and the medial entorhinal cortex (MEC) represent the end-points of the What cortical stream for perception and cognition and the Where cortical stream for spatial representation and action; how the neuromodulator acetylcholine interacts with the septo-hippocampal theta rhythm and modulates category learning; what functions are carried out by other brain rhythms, such as gamma and beta oscillations; and how gamma and beta oscillations interact with theta rhythms. Multiple experimental facts about theta rhythms are unified and functionally explained by this theoretical synthesis.

16.
Front Syst Neurosci ; 15: 650263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967708

RESUMO

All perceptual and cognitive circuits in the human cerebral cortex are organized into layers. Specializations of a canonical laminar network of bottom-up, horizontal, and top-down pathways carry out multiple kinds of biological intelligence across different neocortical areas. This article describes what this canonical network is and notes that it can support processes as different as 3D vision and figure-ground perception; attentive category learning and decision-making; speech perception; and cognitive working memory (WM), planning, and prediction. These processes take place within and between multiple parallel cortical streams that obey computationally complementary laws. The interstream interactions that are needed to overcome these complementary deficiencies mix cell properties so thoroughly that some authors have noted the difficulty of determining what exactly constitutes a cortical stream and the differences between streams. The models summarized herein explain how these complementary properties arise, and how their interstream interactions overcome their computational deficiencies to support effective goal-oriented behaviors.

17.
J Comput Neurosci ; 28(2): 323-46, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20111896

RESUMO

How spiking neurons cooperate to control behavioral processes is a fundamental problem in computational neuroscience. Such cooperative dynamics are required during visual perception when spatially distributed image fragments are grouped into emergent boundary contours. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity occur in response to binary spikes with irregular timing across many interacting cells. Some models have demonstrated spiking dynamics in recurrent laminar neocortical circuits, but not how perceptual grouping occurs. Other models have analyzed the fast speed of certain percepts in terms of a single feedforward sweep of activity, but cannot explain other percepts, such as illusory contours, wherein perceptual ambiguity can take hundreds of milliseconds to resolve by integrating multiple spikes over time. The current model reconciles fast feedforward with slower feedback processing, and binary spikes with analog network-level properties, in a laminar cortical network of spiking cells whose emergent properties quantitatively simulate parametric data from neurophysiological experiments, including the formation of illusory contours; the structure of non-classical visual receptive fields; and self-synchronizing gamma oscillations. These laminar dynamics shed new light on how the brain resolves local informational ambiguities through the use of properly designed nonlinear feedback spiking networks which run as fast as they can, given the amount of uncertainty in the data that they process.


Assuntos
Sensibilidades de Contraste/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Simulação por Computador , Percepção de Forma/fisiologia , Ilusões Ópticas/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Vias Visuais/fisiologia
18.
Front Neuroinform ; 14: 4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116628

RESUMO

This article unifies neural modeling results that illustrate several basic design principles and mechanisms that are used by advanced brains to develop cortical maps with multiple psychological functions. One principle concerns how brains use a strip map that simultaneously enables one feature to be represented throughout its extent, as well as an ordered array of another feature at different positions of the strip. Strip maps include circuits to represent ocular dominance and orientation columns, place-value numbers, auditory streams, speaker-normalized speech, and cognitive working memories that can code repeated items. A second principle concerns how feature detectors for multiple functions develop in topographic maps, including maps for optic flow navigation, reinforcement learning, motion perception, and category learning at multiple organizational levels. A third principle concerns how brains exploit a spatial gradient of cells that respond at an ordered sequence of different rates. Such a rate gradient is found along the dorsoventral axis of the entorhinal cortex, whose lateral branch controls the development of time cells, and whose medial branch controls the development of grid cells. Populations of time cells can be used to learn how to adaptively time behaviors for which a time interval of hundreds of milliseconds, or several seconds, must be bridged, as occurs during trace conditioning. Populations of grid cells can be used to learn hippocampal place cells that represent the large spaces in which animals navigate. A fourth principle concerns how and why all neocortical circuits are organized into layers, and how functionally distinct columns develop in these circuits to enable map development. A final principle concerns the role of Adaptive Resonance Theory top-down matching and attentional circuits in the dynamic stabilization of early development and adult learning. Cortical maps are modeled in visual, auditory, temporal, parietal, prefrontal, entorhinal, and hippocampal cortices.

19.
Front Neurorobot ; 14: 36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670045

RESUMO

Biological neural network models whereby brains make minds help to understand autonomous adaptive intelligence. This article summarizes why the dynamics and emergent properties of such models for perception, cognition, emotion, and action are explainable, and thus amenable to being confidently implemented in large-scale applications. Key to their explainability is how these models combine fast activations, or short-term memory (STM) traces, and learned weights, or long-term memory (LTM) traces. Visual and auditory perceptual models have explainable conscious STM representations of visual surfaces and auditory streams in surface-shroud resonances and stream-shroud resonances, respectively. Deep Learning is often used to classify data. However, Deep Learning can experience catastrophic forgetting: At any stage of learning, an unpredictable part of its memory can collapse. Even if it makes some accurate classifications, they are not explainable and thus cannot be used with confidence. Deep Learning shares these problems with the back propagation algorithm, whose computational problems due to non-local weight transport during mismatch learning were described in the 1980s. Deep Learning became popular after very fast computers and huge online databases became available that enabled new applications despite these problems. Adaptive Resonance Theory, or ART, algorithms overcome the computational problems of back propagation and Deep Learning. ART is a self-organizing production system that incrementally learns, using arbitrary combinations of unsupervised and supervised learning and only locally computable quantities, to rapidly classify large non-stationary databases without experiencing catastrophic forgetting. ART classifications and predictions are explainable using the attended critical feature patterns in STM on which they build. The LTM adaptive weights of the fuzzy ARTMAP algorithm induce fuzzy IF-THEN rules that explain what feature combinations predict successful outcomes. ART has been successfully used in multiple large-scale real world applications, including remote sensing, medical database prediction, and social media data clustering. Also explainable are the MOTIVATOR model of reinforcement learning and cognitive-emotional interactions, and the VITE, DIRECT, DIVA, and SOVEREIGN models for reaching, speech production, spatial navigation, and autonomous adaptive intelligence. These biological models exemplify complementary computing, and use local laws for match learning and mismatch learning that avoid the problems of Deep Learning.

20.
Cogn Psychol ; 58(1): 1-48, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18653176

RESUMO

How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation. The model provides a powerful framework for unifying many data about spatial and object attention, and their interactions during perception, cognition, and action.


Assuntos
Aprendizagem por Associação/fisiologia , Atenção/fisiologia , Redes Neurais de Computação , Reconhecimento Visual de Modelos/fisiologia , Movimentos Sacádicos , Percepção Espacial/fisiologia , Humanos , Modelos Psicológicos , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa