Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998223

RESUMO

To improve the efficiency of a diesel internal combustion engine (ICE), the waste heat carried out by the combustion gases can be recovered with an organic Rankine cycle (ORC) that further drives a vapor compression refrigeration cycle (VCRC). This work offers an exergoeconomic optimization methodology of the VCRC-ORC group. The exergetic analysis highlights the changes that can be made to the system structure to reduce the exergy destruction associated with internal irreversibilities. Thus, the preheating of the ORC fluid with the help of an internal heat exchanger leads to a decrease in the share of exergy destruction in the ORC boiler by 4.19% and, finally, to an increase in the global exergetic yield by 2.03% and, implicitly, in the COP of the ORC-VCRC installation. Exergoeconomic correlations are built for each individual piece of equipment. The mathematical model for calculating the monetary costs for each flow of substance and energy in the system is presented. Following the evolution of the exergoeconomic performance parameters, the optimization strategy is developed to reduce the exergy consumption in the system by choosing larger or higher-performance equipment. When reducing the temperature differences in the system heat exchangers (ORC boiler, condenser, and VCRC evaporator), the unitary cost of the refrigeration drops by 44%. The increase in the isentropic efficiency of the ORC expander and VCRC compressor further reduces the unitary cost of refrigeration by another 15%. Following the optimization procedure, the cost of the cooling unit drops by half. The cost of diesel fuel has a major influence on the unit cost of cooling. A doubling of the cost of diesel fuel leads to an 80% increase in the cost of the cold unit. The original merit of the work is to present a detailed and comprehensive model of optimization based on exergoeconomic principles that can serve as an example for any thermal system optimization.

2.
Entropy (Basel) ; 23(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808885

RESUMO

The purpose of the study is to show that two simple models that take into account only the irreversibility due to temperature difference in the heat exchangers and imperfect regeneration are able to indicate refrigerating machine behavior. In the present paper, the finite physical dimensions thermodynamics (FPDT) method and 0-D modeling using the Schmidt model with imperfect regeneration were applied in the study of a ß type Stirling refrigeration machine.The 0-D modeling is improved by including the irreversibility caused by imperfect regeneration and the finite temperature difference between the gas and the heat exchangers wall. A flowchart of the Stirling refrigerator exergy balance is presented to show the internal and external irreversibilities. It is found that the irreversibility at the regenerator level is more important than that at the heat exchangers level. The energies exchanged by the working gas are expressed according to the practical parameters, necessary for the engineer during the entire project. The results of the two thermodynamic models are presented in comparison with the experimental results, which leads to validation of the proposed FPDT model for the functional and constructive parameters of the studied refrigerating machine.

3.
Entropy (Basel) ; 22(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33287045

RESUMO

The paper presents experimental tests and theoretical studies of a Stirling engine cycle applied to a ß-type machine. The finite physical dimension thermodynamics (FPDT) method and 0D modeling by the imperfectly regenerated Schmidt model are used to develop analytical models for the Stirling engine cycle. The purpose of this study is to show that two simple models that take into account only the irreversibility due to temperature difference in the heat exchangers and imperfect regeneration are able to indicate engine behavior. The share of energy loss for each is determined using these two models as well as the experimental results of a particular engine. The energies exchanged by the working gas are expressed according to the practical parameters, which are necessary for the engineer during the entire project, namely the maximum pressure, the maximum volume, the compression ratio, the temperature of the heat sources, etc. The numerical model allows for evaluation of the energy processes according to the angle of the crankshaft (kinematic-thermodynamic coupling). The theoretical results are compared with the experimental research. The effect of the engine rotation speed on the power and efficiency of the actual operating machine is highlighted. The two methods show a similar variation in performance, although heat loss due to imperfect regeneration is evaluated differently.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa