Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
NMR Biomed ; 35(1): e4615, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34595791

RESUMO

There is a growing interest in the neuroscience community to map the distribution of brain metabolites in vivo. Magnetic resonance spectroscopic imaging (MRSI) is often limited by either a poor spatial resolution and/or a long acquisition time, which severely restricts its applications for clinical and research purposes. Building on a recently developed technique of acquisition-reconstruction for 2D MRSI, we combined a fast Cartesian 1 H-FID-MRSI acquisition sequence, compressed-sensing acceleration, and low-rank total-generalized-variation constrained reconstruction to produce 3D high-resolution whole-brain MRSI with a significant acquisition time reduction. We first evaluated the acceleration performance using retrospective undersampling of a fully sampled dataset. Second, a 20 min accelerated MRSI acquisition was performed on three healthy volunteers, resulting in metabolite maps with 5 mm isotropic resolution. The metabolite maps exhibited the detailed neurochemical composition of all brain regions and revealed parts of the underlying brain anatomy. The latter assessment used previous reported knowledge and a atlas-based analysis to show consistency of the concentration contrasts and ratio across all brain regions. These results acquired on a clinical 3 T MRI scanner successfully combined 3D 1 H-FID-MRSI with a constrained reconstruction to produce detailed mapping of metabolite concentrations at high resolution over the whole brain, with an acquisition time suitable for clinical or research settings.


Assuntos
Mapeamento Encefálico , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Estudos Retrospectivos
2.
Proc Natl Acad Sci U S A ; 116(24): 12103-12108, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31138687

RESUMO

Neonatal intensive care units are willing to apply environmental enrichment via music for preterm newborns. However, no evidence of an effect of music on preterm brain development has been reported to date. Using resting-state fMRI, we characterized a circuitry of interest consisting of three network modules interconnected by the salience network that displays reduced network coupling in preterm compared with full-term newborns. Interestingly, preterm infants exposed to music in the neonatal intensive care units have significantly increased coupling between brain networks previously shown to be decreased in premature infants: the salience network with the superior frontal, auditory, and sensorimotor networks, and the salience network with the thalamus and precuneus networks. Therefore, music exposure leads to functional brain architectures that are more similar to those of full-term newborns, providing evidence for a beneficial effect of music on the preterm brain.


Assuntos
Cognição/fisiologia , Recém-Nascido Prematuro/fisiologia , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Tálamo/fisiologia , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Música , Rede Nervosa/fisiologia
3.
Neuroimage ; 231: 117864, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592241

RESUMO

Both electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are non-invasive methods that show complementary aspects of human brain activity. Despite measuring different proxies of brain activity, both the measured blood-oxygenation (fMRI) and neurophysiological recordings (EEG) are indirectly coupled. The electrophysiological and BOLD signal can map the underlying functional connectivity structure at the whole brain scale at different timescales. Previous work demonstrated a moderate but significant correlation between resting-state functional connectivity of both modalities, however there is a wide range of technical setups to measure simultaneous EEG-fMRI and the reliability of those measures between different setups remains unknown. This is true notably with respect to different magnetic field strengths (low and high field) and different spatial sampling of EEG (medium to high-density electrode coverage). Here, we investigated the reproducibility of the bimodal EEG-fMRI functional connectome in the most comprehensive resting-state simultaneous EEG-fMRI dataset compiled to date including a total of 72 subjects from four different imaging centers. Data was acquired from 1.5T, 3T and 7T scanners with simultaneously recorded EEG using 64 or 256 electrodes. We demonstrate that the whole-brain monomodal connectivity reproducibly correlates across different datasets and that a moderate crossmodal correlation between EEG and fMRI connectivity of r ≈ 0.3 can be reproducibly extracted in low- and high-field scanners. The crossmodal correlation was strongest in the EEG-ß frequency band but exists across all frequency bands. Both homotopic and within intrinsic connectivity network (ICN) connections contributed the most to the crossmodal relationship. This study confirms, using a considerably diverse range of recording setups, that simultaneous EEG-fMRI offers a consistent estimate of multimodal functional connectomes in healthy subjects that are dominantly linked through a functional core of ICNs across spanning across the different timescales measured by EEG and fMRI. This opens new avenues for estimating the dynamics of brain function and provides a better understanding of interactions between EEG and fMRI measures. This observed level of reproducibility also defines a baseline for the study of alterations of this coupling in pathological conditions and their role as potential clinical markers.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/normas , Bases de Dados Factuais/normas , Eletroencefalografia/normas , Imageamento por Ressonância Magnética/normas , Rede Nervosa/diagnóstico por imagem , Adolescente , Adulto , Encéfalo/fisiologia , Conectoma/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Reprodutibilidade dos Testes , Adulto Jovem
4.
Pediatr Res ; 89(5): 1239-1244, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32629458

RESUMO

BACKGROUND: Excessive and inconsolable crying behavior in otherwise healthy infants (a condition called infant colic (IC)) is very distressing to parents, may lead to maternal depression, and in extreme cases, may result in shaken baby syndrome. Despite the high prevalence of this condition (20% of healthy infants), the underlying neural mechanisms of IC are still unknown. METHODS: By employing the latest magnetic resonance imaging (MRI) techniques in newborns, we prospectively investigated whether newborns' early brain responses to a sensory stimulus (smell) is associated with a subsequent crying behavior. RESULTS: In our sample population of 21 healthy breastfed newborns, those who developed IC at 6 weeks exhibited brain activation and functional connectivity in primary and secondary olfactory brain areas that were distinct from those in babies that did not develop IC. Different activation in brain regions known to be involved in sensory integration was also observed in colicky babies. These responses measured shortly after birth were highly correlated with the mean crying time at 6 weeks of age. CONCLUSIONS: Our results offer novel insights into IC pathophysiology by demonstrating that, shortly after birth, the central nervous system of babies developing IC has already greater reactivity to sensory stimuli than that of their noncolicky peers. IMPACT: Shortly after birth, the central nervous system of colicky infants has a greater sensitivity to olfactory stimuli than that of their noncolicky peers. This early sensitivity explains as much as 48% of their subsequent crying behavior at 6 weeks of life. Brain activation patterns to olfactory stimuli in colicky infants include not only primary olfactory areas but also brain regions involved in pain processing, emotional valence attribution, and self-regulation. This study links earlier findings in fields as diverse as gastroenterology and behavioral psychology and has the potential of helping healthcare professionals to define strategies to advise families.


Assuntos
Cólica/diagnóstico por imagem , Cólica/fisiopatologia , Choro , Encéfalo/fisiologia , Aleitamento Materno , Feminino , Humanos , Lactente , Recém-Nascido , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Mães , Pais , Prevalência , Estudos Prospectivos , Inquéritos e Questionários
5.
Epilepsy Behav ; 114(Pt A): 107559, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33243684

RESUMO

BACKGROUND: Olfactory hallucinations can be part of epileptic seizures of orbitofrontal origin. Olfactory hallucinations, however, are rare and therefore the semiology, localization and lateralization characteristics are underdetermined. In addition, many discrepancies are found in the literature regarding olfactory processing and orbitofrontal (OF) functions and olfactory function. Particularly, the questions of laterality and affective component in coding of odors in the OF cortex remain controversial. AIMS: This study explored whether cortical electrical stimulation of the OF and mesiotemporal brain can trigger olfactory hallucinations with special focus on olfactory percepts in terms of laterality and hedonics. MATERIALS AND METHODS: Eight patients with temporal lobe epilepsy participated in the study, at the time of invasive exploration of their epilepsy. The most distal contact of the OF and anterior hippocampus depth electrodes were stimulated (50 Hz, 0.2 ms biphasic pulse; maximal stimulation 4 mA). Patients were instructed to report any kind of sensation they might experience. Intracranial depth electrodes were localized (iElectrodes): subject-specific brain mask, subcortical segmentation and cortical parcellation based on the Destrieux atlas (FreeSurfer) were superposed to the coregistered T1-weighted MRI and CT images (SPM). The center of mass of each electrode-artifact cluster determined the electrode localization. The electrode labeling was done in patient space. To obtain the electrode coordinates in Montreal Neurological Institute (MNI) space, the images obtained previously in the patient space were first segmented and normalized (SPM). Then, the localization procedure (iElectrodes) was run again with these new normalized images in MNI space. RESULTS: No hallucination was evoked by stimulation, neither of the right nor the left hippocampus (8/8 patients). Pleasant olfactory hallucinations were evoked by OF stimulation in 5/8 patients in either hemisphere. Patients named the percept as the smell of lemon or coffee for example. Among those 5 patients, electrodes were localized in the cortex of the olfactory sulcus, medial orbital sulcus or medial OF gyrus. Increasing stimulation amplitude changed the olfactory percept identification in 3 out of those 5 patients. No affective judgement or change in perceived odor intensity was reported by the patients. No hallucination was evoked by the stimulation of the white matter of the medial OF brain in 3/8 patients independently of the hemisphere stimulated. CONCLUSIONS: This study demonstrated that stimulation of the cortex of the medial OF brain and not of its white matter elicits specific pleasant olfactory hallucinations independently of the hemisphere stimulated, supporting one symmetrical olfactory processing in human.


Assuntos
Percepção Olfatória , Córtex Cerebral , Estimulação Elétrica , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Córtex Pré-Frontal
6.
Cereb Cortex ; 30(11): 5717-5730, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32518940

RESUMO

Maternal voice is a highly relevant stimulus for newborns. Adult voice processing occurs in specific brain regions. Voice-specific brain areas in newborns and the relevance of an early vocal exposure on these networks have not been defined. This study investigates voice perception in newborns and the impact of prematurity on the cerebral processes. Functional magnetic resonance imaging (fMRI) and high-density electroencephalography (EEG) were used to explore the brain responses to maternal and stranger female voices in full-term newborns and preterm infants at term-equivalent age (TEA). fMRI results and the EEG oddball paradigm showed enhanced processing for voices in preterms at TEA than in full-term infants. Preterm infants showed additional cortical regions involved in voice processing in fMRI and a late mismatch response for maternal voice, considered as a first trace of a recognition process based on memory representation. Full-term newborns showed increased cerebral activity to the stranger voice. Results from fMRI, oddball, and standard auditory EEG paradigms highlighted important change detection responses to novelty after birth. These findings suggest that the main components of the adult voice-processing networks emerge early in development. Moreover, an early postnatal exposure to voices in premature infants might enhance their capacity to process voices.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Recém-Nascido Prematuro/fisiologia , Reconhecimento Psicológico/fisiologia , Voz , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Nascimento Prematuro
7.
BMC Geriatr ; 20(1): 418, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087078

RESUMO

BACKGROUND: Recent data suggest that musical practice prevents age-related cognitive decline. But experimental evidence remains sparse and no concise information on the neurophysiological bases exists, although cognitive decline represents a major impediment to healthy aging. A challenge in the field of aging is developing training regimens that stimulate neuroplasticity and delay or reverse symptoms of cognitive and cerebral decline. To be successful, these regimens should be easily integrated in daily life and intrinsically motivating. This study combines for the first-time protocolled music practice in elderly with cutting-edge neuroimaging and behavioral approaches, comparing two types of musical education. METHODS: We conduct a two-site Hannover-Geneva randomized intervention study in altogether 155 retired healthy elderly (64-78) years, (63 in Geneva, 92 in Hannover), offering either piano instruction (experimental group) or musical listening awareness (control group). Over 12 months all participants receive weekly training for 1 hour, and exercise at home for ~ 30 min daily. Both groups study different music styles. Participants are tested at 4 time points (0, 6, and 12 months & post-training (18 months)) on cognitive and perceptual-motor aptitudes as well as via wide-ranging functional and structural neuroimaging and blood sampling. DISCUSSION: We aim to demonstrate positive transfer effects for faculties traditionally described to decline with age, particularly in the piano group: executive functions, working memory, processing speed, abstract thinking and fine motor skills. Benefits in both groups may show for verbal memory, hearing in noise and subjective well-being. In association with these behavioral benefits we anticipate functional and structural brain plasticity in temporal (medial and lateral), prefrontal and parietal areas and the basal ganglia. We intend exhibiting for the first time that musical activities can provoke important societal impacts by diminishing cognitive and perceptual-motor decline supported by functional and structural brain plasticity. TRIAL REGISTRATION: The Ethikkomission of the Leibniz Universität Hannover approved the protocol on 14.08.17 (no. 3604-2017), the neuroimaging part and blood sampling was approved by the Hannover Medical School on 07.03.18. The full protocol was approved by the Commission cantonale d'éthique de la recherche de Genève (no. 2016-02224) on 27.02.18 and registered at clinicaltrials.gov on 17.09.18 ( NCT03674931 , no. 81185).


Assuntos
Música , Idoso , Encéfalo/diagnóstico por imagem , Cognição , Alemanha , Humanos , Plasticidade Neuronal , Suíça
8.
Neuroimage ; 185: 857-864, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29630995

RESUMO

Neonatal Intensive Care Units (NICU) provide special equipment designed to give life support for the increasing number of prematurely born infants and assure their survival. More recently NICU's strive to include developmentally oriented care and modulate sensory input for preterm infants. Music, among other sensory stimuli, has been introduced into NICUs, but without knowledge on the basic music processing in the brain of preterm infants. In this study, we explored the cortico-subcortical music processing of different types of conditions (Original music, Tempo modification, Key transposition) in newborns shortly after birth to assess the effective connectivity of the primary auditory cortex with the entire newborn brain. Additionally, we investigated if early exposure during NICU stay modulates brain processing of music in preterm infants at term equivalent age. We approached these two questions using Psychophysiological Interaction (PPI) analyses. A group of preterm infants listened to music (Original music) starting from 33 weeks postconceptional age until term equivalent age and were compared to two additional groups without music intervention; preterm infants and full-term newborns. Auditory cortex functional connectivity with cerebral regions known to be implicated in tempo and familiarity processing were identified only for preterm infants with music training in the NICU. Increased connectivity between auditory cortices and thalamus and dorsal striatum may not only reflect their sensitivity to the known music and the processing of its tempo as familiar, but these results are also compatible with the hypothesis that the previously listened music induces a more arousing and pleasant state. Our results suggest that music exposure in NICU's environment can induce brain functional connectivity changes that are associated with music processing.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Música , Vias Neurais/fisiologia , Estimulação Acústica/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Masculino , Psicofisiologia
9.
Cereb Cortex ; 28(8): 2901-2907, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106509

RESUMO

The sense of smell is one of the oldest and the most primitive senses mammals possess, it helps to evaluate the surrounding environment. From birth, smell is an important sensory modality, highly relevant for neonatal behavioral adaptation. Even though human newborns seem to be able to perceive and react to olfactory stimuli, there is still a lack of knowledge about the ontogeny of smell and the underlying central processing involved in odor perception in newborns. Brain networks involved in chemosensory perception of odorants are well described in adults, however in newborns there is no evidence that central olfaction is functional given the largely unmyelinated neonatal central nervous system. To examine this question, we used functional magnetic resonance imaging (fMRI) in the newborn to characterize cortical response to olfactory and trigeminal odorants. Here we show that brain response to odors can be measured and localized using functional MRI in newborns. Furthermore, we found that the developing brain, only few days after birth, processes new artificial odorants in similar cortical areas than adults, including piriform cortex, orbitofrontal cortex and insula. Our work provides evidence that human olfaction at birth relies on brain functions that involve all levels of the cortical olfactory system.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Odorantes , Condutos Olfatórios/diagnóstico por imagem , Olfato/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Feminino , Idade Gestacional , Humanos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Masculino , Percepção Olfatória , Oxigênio/sangue
10.
Ann Neurol ; 82(2): 278-287, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28749544

RESUMO

OBJECTIVE: Surgical treatment in epilepsy is effective if the epileptogenic zone (EZ) can be correctly localized and characterized. Here we use simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) data to derive EEG-fMRI and electrical source imaging (ESI) maps. Their yield and their individual and combined ability to (1) localize the EZ and (2) predict seizure outcome were then evaluated. METHODS: Fifty-three children with drug-resistant epilepsy underwent EEG-fMRI. Interictal discharges were mapped using both EEG-fMRI hemodynamic responses and ESI. A single localization was derived from each individual test (EEG-fMRI global maxima [GM]/ESI maximum) and from the combination of both maps (EEG-fMRI/ESI spatial intersection). To determine the localization accuracy and its predictive performance, the individual and combined test localizations were compared to the presumed EZ and to the postsurgical outcome. RESULTS: Fifty-two of 53 patients had significant maps: 47 of 53 for EEG-fMRI, 44 of 53 for ESI, and 34 of 53 for both. The EZ was well characterized in 29 patients; 26 had an EEG-fMRI GM localization that was correct in 11, 22 patients had ESI localization that was correct in 17, and 12 patients had combined EEG-fMRI and ESI that was correct in 11. Seizure outcome following resection was correctly predicted by EEG-fMRI GM in 8 of 20 patients, and by the ESI maximum in 13 of 16. The combined EEG-fMRI/ESI region entirely predicted outcome in 9 of 9 patients, including 3 with no lesion visible on MRI. INTERPRETATION: EEG-fMRI combined with ESI provides a simple unbiased localization that may predict surgery better than each individual test, including in MRI-negative patients. Ann Neurol 2017;82:278-287.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Eletroencefalografia , Epilepsias Parciais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos/métodos , Mapeamento Encefálico/métodos , Criança , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsias Parciais/fisiopatologia , Humanos
11.
Neuroimage ; 135: 45-63, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27012501

RESUMO

The ballistocardiogram (BCG) artifact is currently one of the most challenging in the EEG acquired concurrently with fMRI, with correction invariably yielding residual artifacts and/or deterioration of the physiological signals of interest. In this paper, we propose a family of methods whereby the EEG is decomposed using Independent Component Analysis (ICA) and a novel approach for the selection of BCG-related independent components (ICs) is used (PROJection onto Independent Components, PROJIC). Three ICA-based strategies for BCG artifact correction are then explored: 1) BCG-related ICs are removed from the back-reconstruction of the EEG (PROJIC); and 2-3) BCG-related ICs are corrected for the artifact occurrences using an Optimal Basis Set (OBS) or Average Artifact Subtraction (AAS) framework, before back-projecting all ICs onto EEG space (PROJIC-OBS and PROJIC-AAS, respectively). A novel evaluation pipeline is also proposed to assess the methods performance, which takes into account not only artifact but also physiological signal removal, allowing for a flexible weighting of the importance given to physiological signal preservation. This evaluation is used for the group-level parameter optimization of each algorithm on simultaneous EEG-fMRI data acquired using two different setups at 3T and 7T. Comparison with state-of-the-art BCG correction methods showed that PROJIC-OBS and PROJIC-AAS outperformed the others when priority was given to artifact removal or physiological signal preservation, respectively, while both PROJIC-AAS and AAS were in general the best choices for intermediate trade-offs. The impact of the BCG correction on the quality of event-related potentials (ERPs) of interest was assessed in terms of the relative reduction of the standard error (SE) across trials: 26/66%, 32/62% and 18/61% were achieved by, respectively, PROJIC, PROJIC-OBS and PROJIC-AAS, for data collected at 3T/7T. Although more significant improvements were achieved at 7T, the results were qualitatively comparable for both setups, which indicate the wide applicability of the proposed methodologies and recommendations.


Assuntos
Artefatos , Balistocardiografia/métodos , Mapeamento Encefálico/métodos , Diagnóstico por Computador/métodos , Eletroencefalografia/métodos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Técnicas de Imagem de Sincronização Cardíaca/métodos , Criança , Feminino , Humanos , Masculino , Movimento (Física) , Imagem Multimodal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração , Adulto Jovem
12.
J Neurol Neurosurg Psychiatry ; 87(6): 642-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26216941

RESUMO

OBJECTIVE: Drug-resistant temporal lobe epilepsy (TLE) often requires thorough investigation to define the epileptogenic zone for surgical treatment. We used simultaneous interictal scalp EEG-fMRI to evaluate its value for predicting long-term postsurgical outcome. METHODS: 30 patients undergoing presurgical evaluation and proceeding to temporal lobe (TL) resection were studied. Interictal epileptiform discharges (IEDs) were identified on intra-MRI EEG and used to build a model of haemodynamic changes. In addition, topographic electroencephalographic correlation maps were calculated between the average IED during video-EEG and intra-MRI EEG, and used as a condition. This allowed the analysis of all data irrespective of the presence of IED on intra-MRI EEG. Mean follow-up after surgery was 46 months. International League Against Epilepsy (ILAE) outcomes 1 and 2 were considered good, and 3-6 poor, surgical outcome. Haemodynamic maps were classified according to the presence (Concordant) or absence (Discordant) of Blood Oxygen Level-Dependent (BOLD) change in the TL overlapping with the surgical resection. RESULTS: The proportion of patients with good surgical outcome was significantly higher (13/16; 81%) in the Concordant than in the Discordant group (3/14; 21%) (χ(2) test, Yates correction, p=0.003) and multivariate analysis showed that Concordant BOLD maps were independently related to good surgical outcome (p=0.007). Sensitivity and specificity of EEG-fMRI results to identify patients with good surgical outcome were 81% and 79%, respectively, and positive and negative predictive values were 81% and 79%, respectively. INTERPRETATION: The presence of significant BOLD changes in the area of resection on interictal EEG-fMRI in patients with TLE retrospectively confirmed the epileptogenic zone. Surgical resection including regions of haemodynamic changes in the TL may lead to better postoperative outcome.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/cirurgia , Imageamento por Ressonância Magnética , Oxigênio/sangue , Adolescente , Adulto , Mapeamento Encefálico , Criança , Feminino , Seguimentos , Hemodinâmica/fisiologia , Humanos , Aumento da Imagem , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Valor Preditivo dos Testes , Cuidados Pré-Operatórios , Estudos Retrospectivos , Lobo Temporal/irrigação sanguínea , Lobo Temporal/cirurgia , Gravação em Vídeo , Adulto Jovem
13.
Epilepsia ; 57(7): 1086-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27153929

RESUMO

OBJECTIVE: Epilepsy is increasingly considered as the dysfunction of a pathologic neuronal network (epileptic network) rather than a single focal source. We aimed to assess the interactions between the regions that comprise the epileptic network and to investigate their dependence on the occurrence of interictal epileptiform discharges (IEDs). METHODS: We analyzed resting state simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) recordings in 10 patients with drug-resistant focal epilepsy with multifocal IED-related blood oxygen level-dependent (BOLD) responses and a maximum t-value in the IED field. We computed functional connectivity (FC) maps of the epileptic network using two types of seed: (1) a 10-mm diameter sphere centered in the global maximum of IED-related BOLD map, and (2) the independent component with highest correlation to the IED-related BOLD map, named epileptic component. For both approaches, we compared FC maps before and after regressing out the effect of IEDs in terms of maximum and mean t-values and percentage of map overlap. RESULTS: Maximum and mean FC maps t-values were significantly lower after regressing out IEDs at the group level (p < 0.01). Overlap extent was 85% ± 12% and 87% ± 12% when the seed was the 10-mm diameter sphere and the epileptic component, respectively. SIGNIFICANCE: Regions involved in a specific epileptic network show coherent BOLD fluctuations independent of scalp EEG IEDs. FC topography and strength is largely preserved by removing the IED effect. This could represent a signature of a sustained pathologic network with contribution from epileptic activity invisible to the scalp EEG.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Adolescente , Criança , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Oxigênio/sangue , Descanso/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
14.
MAGMA ; 29(3): 605-16, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26946508

RESUMO

OBJECTIVES: The aim of this study was to demonstrate that eloquent cortex and epileptic-related hemodynamic changes can be safely and reliably detected using simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) recordings at ultra-high field (UHF) for clinical evaluation of patients with epilepsy. MATERIALS AND METHODS: Simultaneous EEG-fMRI was acquired at 7 T using an optimized setup in nine patients with lesional epilepsy. According to the localization of the lesion, mapping of eloquent cortex (language and motor) was also performed in two patients. RESULTS: Despite strong artifacts, efficient correction of intra-MRI EEG could be achieved with optimized artifact removal algorithms, allowing robust identification of interictal epileptiform discharges. Noise-sensitive topography-related analyses and electrical source localization were also performed successfully. Localization of epilepsy-related hemodynamic changes compatible with the lesion were detected in three patients and concordant with findings obtained at 3 T. Local loss of signal in specific regions, essentially due to B 1 inhomogeneities were found to depend on the geometric arrangement of EEG leads over the cap. CONCLUSION: These results demonstrate that presurgical mapping of epileptic networks and eloquent cortex is both safe and feasible at UHF, with the benefits of greater spatial resolution and higher blood-oxygenation-level-dependent sensitivity compared with the more traditional field strength of 3 T.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Eletrodos , Feminino , Hemodinâmica , Humanos , Processamento de Imagem Assistida por Computador , Idioma , Masculino , Modelos Estatísticos , Destreza Motora , Oxigênio/sangue , Segurança do Paciente , Reprodutibilidade dos Testes , Adulto Jovem
15.
Neuroimage ; 120: 143-53, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26169325

RESUMO

The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.


Assuntos
Artefatos , Encéfalo/fisiologia , Eletroencefalografia/normas , Imageamento por Ressonância Magnética/normas , Imagem Multimodal/normas , Adulto , Ondas Encefálicas/fisiologia , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Feminino , Cabeça , Humanos , Masculino , Movimento (Física) , Imagem Multimodal/instrumentação , Imagem Multimodal/métodos , Adulto Jovem
16.
Neuroimage ; 105: 132-44, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25449743

RESUMO

The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7 T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12 cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although statistically significant responses could be detected in more than 50% of trials for every subject. Overall, we conclude that the proposed setup is well suited for simultaneous EEG-fMRI at 7 T.


Assuntos
Eletroencefalografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Artefatos , Eletroencefalografia/instrumentação , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Córtex Visual/fisiologia , Adulto Jovem
17.
Eur J Nucl Med Mol Imaging ; 42(7): 1133-43, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25893383

RESUMO

PURPOSE: In patients with pharmacoresistant focal epilepsy, resection of the epileptic focus can lead to freedom from seizures or significant improvement in well-selected candidates. Localization of the epileptic focus with multimodal concordance is crucial for a good postoperative outcome. Beyond the detection of epileptogenic lesions on structural MRI and focal hypometabolism on FDG PET, EEG-based Electric Source Imaging (ESI) and simultaneous EEG and functional MRI (EEG-fMRI) are increasingly applied for mapping epileptic activity. We here report presurgical multimodal interictal imaging using a hybrid PET/MR scanner for single-session FDG PET, MRI, EEG-fMRI and ESI. METHODS: This quadrimodal imaging procedure was performed in a single session in 12 patients using a high-density (256 electrodes) MR-compatible EEG system and a hybrid PET/MR scanner. EEG was used to exclude subclinical seizures during uptake of the PET tracer, to compute ESI on interictal epileptiform discharges and to guide fMRI analysis for mapping haemodynamic changes correlated with interictal epileptiform activity. RESULTS: The whole multimodal recording was performed in less than 2 hours with good patient comfort and data quality. Clinically contributory examinations with at least two modalities were obtained in nine patients and with all modalities in five patients. CONCLUSION: This single-session quadrimodal imaging procedure provided reliable and contributory interictal clinical data. This procedure avoids multiple scanning sessions and is associated with less radiation exposure than PET-CT. Moreover, it guarantees the same medication level and medical condition for all modalities. The procedure improves workflow and could reduce the duration and cost of presurgical epilepsy evaluations.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Adolescente , Adulto , Criança , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/instrumentação , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/instrumentação , Tomografia por Emissão de Pósitrons/instrumentação , Período Pré-Operatório
18.
Brain Topogr ; 28(1): 21-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25307731

RESUMO

One of the major artifact corrupting electroencephalogram (EEG) acquired during functional magnetic resonance imaging (fMRI) is the pulse artifact (PA). It is mainly due to the motion of the head and attached electrodes and wires in the magnetic field occurring after each heartbeat. In this study we propose a novel method to improve PA detection by considering the strong gradient and inversed polarity between left and right EEG electrodes. We acquired high-density EEG-fMRI (256 electrodes) with simultaneous electrocardiogram (ECG) at 3 T. PA was estimated as the voltage difference between right and left signals from the electrodes showing the strongest artifact (facial and temporal). Peaks were detected on this estimated signal and compared to the peaks in the ECG recording. We analyzed data from eleven healthy subjects, two epileptic patients and four healthy subjects with an insulating layer between electrodes and scalp. The accuracy of the two methods was assessed with three criteria: (i) standard deviation, (ii) kurtosis and (iii) confinement into the physiological range of the inter-peak intervals. We also checked whether the new method has an influence on the identification of epileptic spikes. Results show that estimated PA improved artifact detection in 15/17 cases, when compared to the ECG method. Moreover, epileptic spike identification was not altered by the correction. The proposed method improves the detection of pulse-related artifacts, particularly crucial when the ECG is of poor quality or cannot be recorded. It will contribute to enhance the quality of the EEG increasing the reliability of EEG-informed fMRI analysis.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Frequência Cardíaca/fisiologia , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Adulto , Algoritmos , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Criança , Simulação por Computador , Eletrocardiografia/métodos , Eletroencefalografia/instrumentação , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Neuroimage ; 96: 106-16, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24726337

RESUMO

Relating measures of electroencephalography (EEG) back to the underlying sources is a long-standing inverse problem. Here we propose a new method to estimate the EEG sources of identified electrophysiological states that represent spontaneous activity, or are evoked by a stimulus, or caused by disease or disorder. Our method has the unique advantage of seamlessly integrating a statistical significance of the source estimate while efficiently eliminating artifacts (e.g., due to eye blinks, eye movements, bad electrodes). After determining the electrophysiological states in terms of stable topographies using established methods (e.g.: ICA, PCA, k-means, epoch average), we propose to estimate these states' time courses through spatial regression of a General Linear Model (GLM). These time courses are then used to find EEG sources that have a similar time-course (using temporal regression of a second GLM). We validate our method using both simulated and experimental data. Simulated data allows us to assess the difference between source maps obtained by the proposed method and those obtained by applying conventional source imaging of the state topographies. Moreover, we use data from 7 epileptic patients (9 distinct epileptic foci localized by intracranial EEG) and 2 healthy subjects performing an eyes-open/eyes-closed task to elicit activity in the alpha frequency range. Our results indicate that the proposed EEG source imaging method accurately localizes the sources for each of the electrical brain states. Furthermore, our method is particularly suited for estimating the sources of EEG resting states or otherwise weak spontaneous activity states, a problem not adequately solved before.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Modelos Neurológicos , Modelos Estatísticos , Adolescente , Criança , Simulação por Computador , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Análise de Regressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espaço-Temporal
20.
Netw Neurosci ; 8(2): 466-485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952816

RESUMO

Whole-brain functional connectivity networks (connectomes) have been characterized at different scales in humans using EEG and fMRI. Multimodal epileptic networks have also been investigated, but the relationship between EEG and fMRI defined networks on a whole-brain scale is unclear. A unified multimodal connectome description, mapping healthy and pathological networks would close this knowledge gap. Here, we characterize the spatial correlation between the EEG and fMRI connectomes in right and left temporal lobe epilepsy (rTLE/lTLE). From two centers, we acquired resting-state concurrent EEG-fMRI of 35 healthy controls and 34 TLE patients. EEG-fMRI data was projected into the Desikan brain atlas, and functional connectomes from both modalities were correlated. EEG and fMRI connectomes were moderately correlated. This correlation was increased in rTLE when compared to controls for EEG-delta/theta/alpha/beta. Conversely, multimodal correlation in lTLE was decreased in respect to controls for EEG-beta. While the alteration was global in rTLE, in lTLE it was locally linked to the default mode network. The increased multimodal correlation in rTLE and decreased correlation in lTLE suggests a modality-specific lateralized differential reorganization in TLE, which needs to be considered when comparing results from different modalities. Each modality provides distinct information, highlighting the benefit of multimodal assessment in epilepsy.


The relationship between resting-state hemodynamic (fMRI) and electrophysiological (EEG) connectivity has been investigated in healthy subjects, but this relationship is unknown in patients with left and right temporal lobe epilepsies (l/rTLE). Does the magnitude of the relationship differ between healthy subjects and patients? What role does the laterality of the epileptic focus play? What are the spatial contributions to this relationship? Here we use concurrent EEG-fMRI recordings of 65 subjects from two centers (35 controls, 34 TLE patients), to assess the correlation between EEG and fMRI connectivity. For all datasets, frequency-specific changes in cross-modal correlation were seen in lTLE and rTLE. EEG and fMRI connectivities do not measure perfectly overlapping brain networks and provide distinct information on brain networks altered in TLE, highlighting the benefit of multimodal assessment to inform about normal and pathological brain function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa