Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Yeast ; 41(6): 379-400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639144

RESUMO

Under stress conditions, ribosome biogenesis is downregulated. This process requires that expression of ribosomal RNA, ribosomal protein, and ribosome biogenesis genes be controlled in a coordinated fashion. The mechanistic Target of Rapamycin Complex 1 (mTORC1) participates in sensing unfavorable conditions to effect the requisite change in gene expression. In Saccharomyces cerevisiae, downregulation of ribosomal protein genes involves dissociation of the activator Ifh1p in a process that depends on Utp22p, a protein that also functions in pre-rRNA processing. Ifh1p has a paralog, Crf1p, which was implicated in communicating mTORC1 inhibition and hence was perceived as a repressor. We focus here on two ribosomal biogenesis genes, encoding Utp22p and the high mobility group protein Hmo1p, both of which are required for communication of mTORC1 inhibition to target genes. Crf1p functions as an activator on these genes as evidenced by reduced mRNA abundance and RNA polymerase II occupancy in a crf1Δ strain. Inhibition of mTORC1 has distinct effects on expression of HMO1 and UTP22; for example, on UTP22, but not on HMO1, the presence of Crf1p promotes the stable depletion of Ifh1p. Our data suggest that Crf1p functions as a weak activator, and that it may be required to prevent re-binding of Ifh1p to some gene promoters after mTORC1 inhibition in situations when Ifh1p is available. We propose that the inclusion of genes encoding proteins required for mTORC1-mediated downregulation of ribosomal protein genes in the same regulatory circuit as the ribosomal protein genes serves to optimize transcriptional responses during mTORC1 inhibition.


Assuntos
Regulação Fúngica da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores
2.
J Bacteriol ; 205(7): e0047822, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37314346

RESUMO

The transcriptional regulator PecS is encoded by select bacterial pathogens. For instance, in the plant pathogen Dickeya dadantii, PecS controls a range of virulence genes, including pectinase genes and the divergently oriented gene pecM, which encodes an efflux pump through which the antioxidant indigoidine is exported. In the plant pathogen Agrobacterium fabrum (formerly named Agrobacterium tumefaciens), the pecS-pecM locus is conserved. Using a strain of A. fabrum in which pecS has been disrupted, we show here that PecS controls a range of phenotypes that are associated with bacterial fitness. PecS represses flagellar motility and chemotaxis, which are processes that are important for A. fabrum to reach plant wound sites. Biofilm formation and microaerobic survival are reduced in the pecS disruption strain, whereas the production of acyl homoserine lactone (AHL) and resistance to reactive oxygen species (ROS) are increased when pecS is disrupted. AHL production and resistance to ROS are expected to be particularly relevant in the host environment. We also show that PecS does not participate in the induction of vir genes. The inducing ligands for PecS, urate, and xanthine, may be found in the rhizosphere, and they accumulate within the plant host upon infection. Therefore, our data suggest that PecS mediates A. fabrum fitness during its transition from the rhizosphere to the host plant. IMPORTANCE PecS is a transcription factor that is conserved in several pathogenic bacteria, where it regulates virulence genes. The plant pathogen Agrobacterium fabrum is important not only for its induction of crown galls in susceptible plants but also for its role as a tool in the genetic manipulation of host plants. We show here that A. fabrum PecS controls a range of phenotypes, which would confer the bacteria an advantage while transitioning from the rhizosphere to the host plant. This includes the production of signaling molecules, which are critical for the propagation of the tumor-inducing plasmid. A more complete understanding of the infection process may inform approaches by which to treat infections as well as to facilitate the transformation of recalcitrant plant species.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/genética , Espécies Reativas de Oxigênio , Agrobacterium/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/genética
3.
J Bacteriol ; 204(11): e0023722, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36286517

RESUMO

Burkholderia thailandensis is a member of the Burkholderia pseudomallei complex. It encodes the transcription factor MftR, which is conserved among the more pathogenic Burkholderia spp. and previously shown to be a global regulator of gene expression. We report here that a B. thailandensis strain in which the mftR gene is disrupted is more virulent in both Caenorhabditis elegans and onion. The ΔmftR strain exhibits a number of phenotypes associated with virulence. It is more proficient at forming biofilm, and the arcDABC gene cluster, which has been linked to anaerobic survival and fitness within a biofilm, is upregulated. Swimming and swarming motility are also elevated in ΔmftR cells. We further show that MftR is one of several transcription factors which control production of the siderophore malleobactin. MftR binds directly to the promoter driving expression of mbaS, which encodes the extracytoplasmic function sigma factor MbaS that is required for malleobactin production. Malleobactin is a primary siderophore in B. thailandensis as evidenced by reduced siderophore production in mbaS::Tc cells, in which mbaS is disrupted. Expression of mbaS is increased ~5-fold in ΔmftR cells, and siderophore production is elevated. Under iron-limiting conditions, mbaS expression is increased ~150-fold in both wild-type and ΔmftR cells, respectively, reflecting regulation by the ferric uptake regulator (Fur). The mbaS expression profiles also point to repression by a separate, ligand-responsive transcription factor, possibly ScmR. Taken together, these data indicate that MftR controls a number of phenotypes, all of which promote bacterial survival in a host environment. IMPORTANCE Bacterial pathogens face iron limitation in a host environment. To overcome this challenge, they produce siderophores, small iron-chelating molecules. Uptake of iron-siderophore complexes averts bacterial iron limitation. In Burkholderia spp., malleobactin or related compounds are the primary siderophores. We show here that genes encoding proteins required for malleobactin production in B. thailandensis are under the direct control of the global transcription factor MftR. Repression of gene expression by MftR is relieved when MftR binds xanthine, a purine metabolite present in host cells. Our work therefore identifies a mechanism by which siderophore production may be optimized in a host environment, thus contributing to bacterial fitness.


Assuntos
Burkholderia , Sideróforos , Sideróforos/metabolismo , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Ferro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Mol Microbiol ; 115(4): 610-622, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33053234

RESUMO

One of the most commonly prescribed antibiotics against Burkholderia infections is co-trimoxazole, a cocktail of trimethoprim and sulfamethoxazole. Trimethoprim elicits an upregulation of the mal gene cluster, which encodes proteins involved in synthesis of the cytotoxic polyketide malleilactone; trimethoprim does so by increasing expression of the malR gene, which encodes the activator MalR. We report that B. thailandensis grown on trimethoprim exhibited increased virulence against Caenorhabditis elegans. This enhanced virulence correlated with an increase in expression of the mal gene cluster. Notably, inhibition of xanthine dehydrogenase by addition of allopurinol led to similar upregulation of malA and malR, with addition of trimethoprim or allopurinol also resulting in an equivalent intracellular accumulation of xanthine. Xanthine is a ligand for the transcription factor MftR that leads to attenuated DNA binding, and we show using chromatin immunoprecipitation that MftR binds directly to malR. Our gene expression data suggest that malR expression is repressed by both MftR and by a separate transcription factor, which also responds to a metabolite that accumulates on exposure to trimethoprim. Since allopurinol elicits a similar increase in malR/malA expression as trimethoprim, we suggest that impaired purine homeostasis plays a primary role in trimethoprim-mediated induction of malR and in turn malA.


Assuntos
Proteínas de Bactérias/fisiologia , Burkholderia/efeitos dos fármacos , Burkholderia/fisiologia , Caenorhabditis elegans/microbiologia , Regulação Bacteriana da Expressão Gênica , Purinas/metabolismo , Proteínas Repressoras/fisiologia , Trimetoprima/farmacologia , Animais , Antibacterianos/farmacologia , Burkholderia/patogenicidade , Infecções por Burkholderia/microbiologia , Homeostase , Família Multigênica , Sulfametoxazol/farmacologia , Fatores de Transcrição/metabolismo , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Virulência , Xantina/metabolismo
5.
Appl Environ Microbiol ; 87(24): e0158821, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613763

RESUMO

In this study, comprehensive analyses were performed to determine the function of an atypical MarR homolog in Achromobacter sp. strain As-55. Genomic analyses of Achromobacter sp. As-55 showed that this marR is located adjacent to an arsV gene. ArsV is a flavin-dependent monooxygenase that confers resistance to the antibiotic methylarsenite [MAs(III)], the organoarsenic compound roxarsone(III) [Rox(III)], and the inorganic antimonite [Sb(III)]. Similar marR genes are widely distributed in arsenic-resistant bacteria. Phylogenetic analyses showed that these MarRs are found in operons predicted to be involved in resistance to inorganic and organic arsenic species, so the subfamily was named MarRars. MarRars orthologs have three conserved cysteine residues, which are Cys36, Cys37, and Cys157 in Achromobacter sp. As-55, mutation of which compromises the response to MAs(III)/Sb(III). GFP-fluorescent biosensor assays show that AdMarRars (MarR protein of Achromobacter deleyi As-55) responds to trivalent As(III) and Sb(III) but not to pentavalent As(V) or Sb(V). The results of RT-qPCR assays show that arsV is expressed constitutively in a marR deletion mutant, indicating that marR represses transcription of arsV. Moreover, electrophoretic mobility shift assays (EMSAs) demonstrate that AdMarRars binds to the promoters of both marR and arsV in the absence of ligands and that DNA binding is relieved upon binding of As(III) and Sb(III). Our results demonstrate that AdMarRars is a novel As(III)/Sb(III)-responsive transcriptional repressor that controls expression of arsV, which confers resistance to MAs(III), Rox(III), and Sb(III). AdMarRars and its orthologs form a subfamily of MarR proteins that regulate genes conferring resistance to arsenic-containing antibiotics. IMPORTANCE In this study, a MarR family member, AdMarRars was shown to regulate the arsV gene, which confers resistance to arsenic-containing antibiotics. It is a founding member of a distinct subfamily that we refer to as MarRars, regulating genes conferring resistance to arsenic and antimony antibiotic compounds. AdMarRars was shown to be a repressor containing conserved cysteine residues that are required to bind As(III) and Sb(III), leading to a conformational change and subsequent derepression. Here we show that members of the MarR family are involved in regulating arsenic-containing compounds.


Assuntos
Achromobacter/genética , Arsênio , Arsenicais , Genes Bacterianos , Achromobacter/efeitos dos fármacos , Antibacterianos , Arsênio/farmacologia , Arsenicais/farmacologia , Cisteína , Farmacorresistência Bacteriana , Família Multigênica , Filogenia , Roxarsona/farmacologia
6.
J Biol Chem ; 294(6): 1891-1903, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30545940

RESUMO

The antibiotic trimethoprim is frequently used to manage Burkholderia infections, and members of the resistance-nodulation-division (RND) family of efflux pumps have been implicated in multidrug resistance of this species complex. We show here that a member of the distinct Escherichia coli multidrug resistance B (EmrB) family is a primary exporter of trimethoprim in Burkholderia thailandensis, as evidenced by increased trimethoprim sensitivity after inactivation of emrB, the gene that encodes EmrB. We also found that the emrB gene is up-regulated following the addition of gentamicin and that this up-regulation is due to repression of the gene encoding OstR, a member of the multiple antibiotic resistance regulator (MarR) family. The addition of the oxidants H2O2 and CuCl2 to B. thailandensis cultures resulted in OstR-dependent differential emrB expression, as determined by qRT-PCR analysis. Specifically, OstR functions as a rheostat that optimizes emrB expression under oxidizing conditions, and it senses oxidants by a unique mechanism involving two vicinal cysteines and one distant cysteine (Cys3, Cys4, and Cys169) per monomer. Paradoxically, emrB inactivation increased resistance of B. thailandensis to tetracycline, a phenomenon that correlated with up-regulation of an RND efflux pump. These observations highlight the intricate mechanisms by which expression of genes that encode efflux pumps is optimized depending on cellular concentrations of antibiotics and oxidants.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Burkholderia/fisiologia , Farmacorresistência Bacteriana/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Cisteína , Escherichia coli/química , Escherichia coli/genética , Oxidantes/metabolismo , Oxidantes/farmacologia , Proteínas Repressoras/genética , Resistência a Trimetoprima
7.
Crit Rev Biochem Mol Biol ; 52(6): 595-613, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28670937

RESUMO

Members of the multiple antibiotic resistance regulator (MarR) family of transcription factors are critical for bacterial cells to respond to chemical signals and to convert such signals into changes in gene activity. Obligate dimers belonging to the winged helix-turn-helix protein family, they are critical for regulation of a variety of functions, including degradation of organic compounds and control of virulence gene expression. The conventional regulatory paradigm is based on a genomic locus in which the gene encoding the MarR protein is divergently oriented from a gene under its control; MarR binding to the intergenic region controls expression of both genes by changing the interaction of RNA polymerase with gene promoters. MarR protein oxidation or binding of a small molecule ligand adversely affects DNA binding, resulting in altered expression of the divergent genes. The generality of this simple paradigm, including the regulation of Escherichia coli MarR by direct binding of antibiotics, has been challenged by reports published in recent years. In addition, structural and biochemical analyses of ligand binding to numerous MarR homologs are converging to identify a shared ligand-binding "hot-spot". This review highlights recent research advances that point to shared features, yet at the same time highlights the remarkable flexibility with which members of this protein family implement responses to inducing signals. A more comprehensive understanding of protein function will pave the way towards the development of both antibacterial agents and biosensors that are based on MarR family proteins.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Fatores de Transcrição/metabolismo , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Técnicas Biossensoriais/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
Biochemistry ; 58(21): 2564-2575, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31046241

RESUMO

The plant pathogen Pectobacterium atrosepticum encounters a stressful environment when it colonizes the plant apoplast. Chief among the stressors are the reactive oxygen species (ROS) that are produced by the host as a first line of defense. Bacterial transcription factors in turn use these signals as cues to upregulate expression of virulence-associated genes. We have previously shown that the transcription factor PecS from P. atrosepticum binds the promoters that drive expression of pecS and pecM, which encodes an efflux pump, to repress gene expression. We show here that addition of oxidant relieves repression in vivo and in vitro. While reduced PecS distorts promoter DNA on binding, oxidized PecS does not, as evidenced by DNaseI footprinting. PecS oxidation is reversible, as shown by an oxidant-dependent quenching of the intrinsic tryptophan fluorescence that is completely reversed upon addition of a reducing agent. Cysteine 45 positioned at the PecS dimer interface is the redox sensor. Reduced PecS-C45A causes less DNA distortion on binding compared to wild-type PecS; addition of an oxidant has no effect on binding, and PecS-C45A cannot repress gene expression. Our data suggest that reduced PecS distorts its cognate DNA on binding, perhaps inducing a conformation in which promoter elements are suboptimally aligned for RNA polymerase binding, resulting in transcriptional repression. In contrast, oxidized PecS binds promoter DNA such that RNA polymerase may successfully compete with PecS for binding, allowing gene expression. This mode of regulation would facilitate induction of the PecS regulon when the bacteria encounter host-derived ROS in the plant apoplast.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica , Pectobacterium/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cisteína/química , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Microscopia de Fluorescência , Proteínas Mutantes/metabolismo , Oxirredução , Pectobacterium/patogenicidade , Plantas/metabolismo , Plantas/microbiologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/química , Transcrição Gênica
9.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29967095

RESUMO

Fatty acid hydroperoxides are involved in host-pathogen interactions. In both plants and mammals, polyunsaturated fatty acids are liberated during infection and enzymatically oxidized to the corresponding toxic hydroperoxides during the defensive oxidative burst that is designed to thwart the infection. The bacterial transcription factor OhrR (organic hydroperoxide reductase regulator) is oxidized by organic hydroperoxides, as a result of which the ohr gene encoding organic hydroperoxide reductase is induced. This enzyme converts the hydroperoxides to less toxic alcohols. We show here that OhrR from Burkholderia thailandensis represses expression of ohr Gene expression is induced by cumene hydroperoxide and to a lesser extent by inorganic oxidants; however, Ohr contributes to degradation only of the organic hydroperoxide. B. thailandensis OhrR, which binds specific sites in both ohr and ohrR promoters, as evidenced by DNase I footprinting, belongs to the 2-Cys subfamily of OhrR proteins, and its oxidation leads to reversible disulfide bond formation between conserved N- and C-terminal cysteines in separate monomers. Oxidation of the N-terminal Cys is sufficient for attenuation of DNA binding in vitro, with complete restoration of DNA binding occurring on addition of a reducing agent. Surprisingly, both overexpression of ohr and deletion of ohr results in enhanced survival on exposure to organic hydroperoxide in vitro While Δohr cells are more virulent in a Caenorhabditis elegans model of infection, ΔohrR cells are less so. Taken together, our data suggest that B. thailandensis OhrR has several unconventional features and that both OhrR and organic hydroperoxides may contribute to virulence.


Assuntos
Proteínas de Bactérias/genética , Burkholderia/genética , Caenorhabditis elegans/microbiologia , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/genética , Animais , Proteínas de Bactérias/química , Derivados de Benzeno/farmacologia , Burkholderia/efeitos dos fármacos , Burkholderia/patogenicidade , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Desoxirribonuclease I , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Oxirredução , Proteínas Repressoras/química
10.
Curr Genet ; 64(1): 131-135, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28831551

RESUMO

Under conditions of nutrient limitation and cellular stress, or by addition of rapamycin, the mechanistic target of rapamycin complex 1 (mTORC1) is inhibited. This results in downregulation of genes that encode rRNA and ribosomal proteins. While most of the mTORC1 functions that have been previously characterized at a mechanistic level take place in the cytoplasm, nuclear roles have also been reported, including direct association of TOR kinase with rRNA genes. This review highlights the recent observation that Saccharomyces cerevisiae Tor1p also binds directly to the RNA polymerase II-transcribed gene encoding Hmo1p, a protein that is involved in communicating mTORC1 activity to downstream targets. A reduction in HMO1 mRNA levels in response to DNA damage or addition of rapamycin requires Tor1p, suggesting a role for TOR kinase in control of gene activity by direct binding to target genes. Potential targets for chromatin-bound Tor1p are discussed and the possibility that Tor1p similarly contributes to control of other genes linked to ribosome biogenesis is considered.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase II/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica , Cromatina/genética , Cromatina/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ativação Transcricional
11.
Biochemistry ; 56(17): 2315-2327, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28406615

RESUMO

Biofilm formation by pathogenic Burkholderia species is a serious complication as it renders the bacteria resistant to antibiotics and host defenses. Using B. thailandensis, we report here a novel redox-sensitive member of the multiple antibiotic resistance regulator (MarR) protein family, BifR, which represses biofilm formation. BifR is encoded as part of the emrB-bifR operon; emrB-bifR is divergent to ecsC, which encodes a putative LasA protease. In Pseudomonas aeruginosa, LasA has been implicated in virulence by contributing to cleavage of elastase. BifR repressed the expression of ecsC and emrB-bifR, and expression was further repressed under oxidizing conditions. BifR bound two sites in the intergenic region between ecsC and emrB-bifR with nanomolar affinity under both reducing and oxidizing conditions; however, oxidized BifR formed a disulfide-linked dimer-of-dimers, a covalent linkage that was absent in BifR-C104A in which the redox-active cysteine was replaced with alanine. BifR also repressed an operon encoding enzymes required for synthesis of phenazine antibiotics, which function as alternate respiratory electron receptors, and inactivation of bifR resulted in enhanced biofilm formation. Taken together, our data suggest that BifR functions to control LasA production and expression of genes involved in biofilm formation, in part by regulating synthesis of alternate electron acceptors that promote survival in the oxygen-limiting environment of a biofilm. The correlation between increased repression of emrB-bifR under oxidative conditions and the formation of a covalently linked BifR dimer-of-dimers suggests that BifR may modulate gene activity in response to cellular redox state.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Burkholderia/fisiologia , Metaloproteases/metabolismo , Modelos Biológicos , Fatores de Virulência/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Burkholderia/enzimologia , Burkholderia/crescimento & desenvolvimento , Cisteína/química , Cistina/química , DNA Intergênico , Dimerização , Estabilidade Enzimática , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Temperatura Alta , Metaloproteases/química , Metaloproteases/genética , Mutação , Óperon , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética
12.
Biochemistry ; 56(43): 5831-5843, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29027458

RESUMO

Agrobacterium fabrum induces tumor growth in susceptible plant species. The upregulation of virulence genes that occurs when the bacterium senses plant-derived compounds is enhanced by acidic pH and limiting inorganic phosphate. Nutrient starvation may also trigger the stringent response, and purine salvage is among the pathways expected to be favored under such conditions. We show here that phosphate limitation induces the stringent response, as evidenced by production of (p)ppGpp, and that the xdhCSML operon encoding the purine salvage enzyme xanthine dehydrogenase is upregulated ∼15-fold. The xdhCSML operon is under control of the TetR family transcription factor XdhR; direct binding of ppGpp to XdhR attenuates DNA binding, and the enhanced xdhCSML expression correlates with increased cellular levels of (p)ppGpp. Xanthine dehydrogenase may also divert purines away from salvage pathways to form urate, the ligand for the transcription factor PecS, which in the plant pathogen Dickeya dadantii is a key regulator of virulence gene expression. However, urate levels remain low under conditions that produce increased levels of xdhCSML expression, and neither acidic pH nor limiting phosphate results in induction of genes under control of PecS. Instead, expression of such genes is induced only by externally supplemented urate. Taken together, our data indicate that purine salvage is favored during the stringent response induced by phosphate starvation, suggesting that control of this pathway may constitute a novel approach to modulating virulence. Because bacterial purine catabolism appears to be unaffected, as evidenced by the absence of urate accumulation, we further propose that the PecS regulon is induced by only host-derived urate.


Assuntos
Agrobacterium , Proteínas de Bactérias , Fosfatos/metabolismo , Purinas/metabolismo , Fatores de Virulência , Xantina Desidrogenase , Agrobacterium/genética , Agrobacterium/metabolismo , Agrobacterium/patogenicidade , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Ácido Úrico/metabolismo , Fatores de Virulência/biossíntese , Fatores de Virulência/genética , Xantina Desidrogenase/biossíntese , Xantina Desidrogenase/genética
13.
Mol Microbiol ; 100(4): 701-18, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26833627

RESUMO

The gene encoding Streptomyces coelicolor xanthine dehydrogenase regulator (XdhR) is divergently oriented from xdhABC, which encodes xanthine dehydrogenase (Xdh). Xdh is required for purine salvage pathways. XdhR was previously shown to repress xdhABC expression. We show that XdhR binds the xdhABC-xdhR intergenic region with high affinity (Kd ∼ 0.5 nM). DNaseI footprinting reveals that this complex formation corresponds to XdhR binding the xdhR gene promoter at two adjacent sites; at higher protein concentrations, protection expands to a region that overlaps the transcriptional and translational start sites of xdhABC. While substrates for Xdh have little effect on DNA binding, GTP and ppGpp dissociate the DNA-XdhR complex. Progression of cells to stationary phase, a condition associated with increased (p)ppGpp production, leads to elevated xdhB expression; in contrast, inhibition of Xdh by allopurinol results in xdhB repression. We propose that XdhR is a direct target of (p)ppGpp, and that expression of xdhABC is upregulated during the stringent response to promote purine salvage pathways, maintain GTP homeostasis and ensure continued (p)ppGpp synthesis. During exponential phase growth, basal levels of xdhABC expression may be achieved by GTP serving as a lower-affinity XdhR ligand.


Assuntos
Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/metabolismo , Purinas/metabolismo , Streptomyces coelicolor/genética , Fatores de Transcrição/metabolismo , Xantina Desidrogenase/genética , Alopurinol/farmacologia , Escherichia coli/genética , Guanosina Trifosfato/metabolismo , Homeostase , Regiões Promotoras Genéticas , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/crescimento & desenvolvimento , Fatores de Transcrição/genética , Transcrição Gênica , Xantina/metabolismo , Xantina Desidrogenase/metabolismo
14.
Nucleic Acids Res ; 43(12): 5759-70, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25979266

RESUMO

DNA is packaged into condensed chromatin fibers by association with histones and architectural proteins such as high mobility group (HMGB) proteins. However, this DNA packaging reduces accessibility of enzymes that act on DNA, such as proteins that process DNA after double strand breaks (DSBs). Chromatin remodeling overcomes this barrier. We show here that the Saccharomyces cerevisiae HMGB protein HMO1 stabilizes chromatin as evidenced by faster chromatin remodeling in its absence. HMO1 was evicted along with core histones during repair of DSBs, and chromatin remodeling events such as histone H2A phosphorylation and H3 eviction were faster in absence of HMO1. The facilitated chromatin remodeling in turn correlated with more efficient DNA resection and recruitment of repair proteins; for example, inward translocation of the DNA-end-binding protein Ku was faster in absence of HMO1. This chromatin stabilization requires the lysine-rich C-terminal extension of HMO1 as truncation of the HMO1 C-terminal tail phenocopies hmo1 deletion. Since this is reminiscent of the need for the basic C-terminal domain of mammalian histone H1 in chromatin compaction, we speculate that HMO1 promotes chromatin stability by DNA bending and compaction imposed by its lysine-rich domain and that it must be evicted along with core histones for efficient DSB repair.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Grupo de Alta Mobilidade/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Antígenos Nucleares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Loci Gênicos , Proteínas de Grupo de Alta Mobilidade/análise , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/metabolismo , Autoantígeno Ku , Fosforilação , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
15.
Biochem J ; 466(2): 347-58, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25494937

RESUMO

Trans-aconitate methyltransferase regulator (TamR) is a member of the ligand-responsive multiple antibiotic resistance regulator (MarR) family of transcription factors. In Streptomyces coelicolor, TamR regulates transcription of tamR (encoding TamR), tam (encoding trans-aconitate methyltransferase) and sacA (encoding aconitase); up-regulation of these genes promotes metabolic flux through the citric acid cycle. DNA binding by TamR is attenuated and transcriptional derepression is achieved on binding of ligands such as citrate and trans-aconitate to TamR. In the present study, we show that three additional genes are regulated by S. coelicolor TamR. Genes encoding malate synthase (aceB1; SCO6243), malate dehydrogenase (mdh; SCO4827) and isocitrate dehydrogenase (idh; SCO7000) are up-regulated in vivo when citrate and trans-aconitate accumulate, and TamR binds the corresponding gene promoters in vitro, a DNA binding that is attenuated by cognate ligands. Mutations to the TamR binding site attenuate DNA binding in vitro and result in constitutive promoter activity in vivo. The predicted TamR binding sites are highly conserved in the promoters of these genes in Streptomyces species that encode divergent tam-tamR gene pairs, suggesting evolutionary conservation. Like aconitase and trans-aconitate methyltransferase, malate dehydrogenase, isocitrate dehydrogenase and malate synthase are closely related to the citric acid cycle, either catalysing individual reaction steps or, in the case of malate synthase, participating in the glyoxylate cycle to produce malate that enters the citric acid cycle to replenish the intermediate pool. Taken together, our data suggest that TamR plays an important and conserved role in promoting metabolic flux through the citric acid cycle.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico , Regulação Bacteriana da Expressão Gênica , Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Streptomyces coelicolor/metabolismo , Ácido Aconítico/metabolismo , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/genética , Ácido Cítrico/metabolismo , Indução Enzimática , Genes Reporter , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ligantes , Malato Desidrogenase/química , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Malato Sintase/química , Malato Sintase/genética , Malato Sintase/metabolismo , Metiltransferases/química , Metiltransferases/genética , Proteínas Mutantes/agonistas , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Elementos de Resposta , Especificidade da Espécie , Streptomyces coelicolor/enzimologia
16.
Anal Biochem ; 481: 1-3, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25908559

RESUMO

Fragment analysis was developed to determine the sizes of DNA fragments relative to size standards of known lengths using a capillary electrophoresis genetic analyzer. This approach has since been adapted for use in DNA footprinting. However, DNA footprinting requires accurate determination of both fragment length and intensity, imposing specific demands on the experimental design. Here we delineate essential considerations involved in optimizing the fragment analysis workflow for use in DNase I footprinting to ensure that changes in DNase I cleavage patterns may be reliably identified.


Assuntos
Pegada de DNA/métodos , DNA/química , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Eletroforese Capilar/métodos , Sítios de Ligação , DNA/genética , Regiões Promotoras Genéticas , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fluxo de Trabalho
17.
Biochemistry ; 53(27): 4368-80, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24955985

RESUMO

Members of the multiple antibiotic resistance regulator (MarR) family often regulate gene activity by responding to a specific ligand. In the absence of ligand, most MarR proteins function as repressors, while ligand binding causes attenuated DNA binding and therefore increased gene expression. Previously, we have shown that urate is a ligand for MftR (major facilitator transport regulator), which is encoded by the soil bacterium Burkholderia thailandensis. We show here that both mftR and the divergently oriented gene mftP encoding a major facilitator transport protein are upregulated in the presence of urate. MftR binds two cognate sites in the mftR-mftP intergenic region with equivalent affinity and sensitivity to urate. Mutagenesis of four conserved residues previously reported to be involved in urate binding to Deinococcus radiodurans HucR and Rhizobium radiobacter PecS significantly reduced protein stability and DNA binding affinity but not ligand binding. These data suggest that residues equivalent to those implicated in ligand binding to HucR and PecS serve structural roles and that MftR relies on distinct residues for ligand binding. MftR exhibits a two-step melting transition suggesting independent unfolding of the dimerization and DNA-binding regions; urate binding or mutations in the predicted ligand-binding sites result in one-step unfolding transitions. We suggest that MftR binds the ligand in a cleft between the DNA-binding lobes and the dimer interface but that the mechanism of ligand-mediated attenuation of DNA binding differs from that proposed for other urate-responsive MarR homologues. Since DNA binding by MftR is attenuated at 37 °C, our data also suggest that MftR responds to both ligand and a thermal upshift by attenuated DNA binding and upregulation of the genes under its control.


Assuntos
Proteínas de Bactérias/química , Burkholderia/metabolismo , DNA/química , Fatores de Transcrição/química , Ácido Úrico/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Genes Bacterianos , Loci Gênicos , Temperatura Alta , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Filogenia , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido Úrico/metabolismo
18.
Mol Microbiol ; 87(6): 1151-66, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23320788

RESUMO

Multiple antibiotic resistance regulator (MarR) family transcriptional regulators usually regulate gene activity by responding to specific ligands. Here we show that TamR (trans-aconitate methyltransferase regulator), a MarR homologue from Streptomyces coelicolor, functions in oxidative stress responses to regulate a key step in central metabolism. The gene encoding TamR is oriented divergently from the tam gene, which encodes trans-aconitate methyltransferase. Trans-aconitate methyltransferase methylates trans-aconitate, which is formed when cis-aconitate is released during aconitase-mediated isomerization of citrate to isocitrate; trans-aconitate, but not its methyl ester, is a potent inhibitor of aconitase. We show that TamR binds with high affinity to the intergenic region between the tamR and tam genes. Notably, trans-aconitate attenuates DNA-binding by TamR, as do citrate, cis-aconitate and isocitrate, which are the substrate, intermediate and product of aconitase respectively. In vivo, hydrogen peroxide and citrate induce significant upregulation of the tam (SCO3132), tamR (SCO3133) and aconitase (SCO5999) genes. Since oxidative stress leads to disassembly of the [4Fe-4S] cluster that is essential for aconitase activity, resulting in accumulation of citrate and release of cis-aconitate and its subsequent conversion to trans-aconitate, we propose that TamR mediates a novel regulatory function in which the inhibitory effects of trans-aconitate and accumulated citrate are alleviated.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Streptomyces coelicolor/fisiologia , Estresse Fisiológico , Transativadores/metabolismo , Sítios de Ligação , DNA Bacteriano/metabolismo , Ligação Proteica , Streptomyces coelicolor/genética
19.
Biochem J ; 456(2): 275-82, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24059867

RESUMO

Ku is central to the non-homologous end-joining pathway of double-strand-break repair in all three major domains of life, with eukaryotic homologues being associated with more diversified roles compared with prokaryotic and archaeal homologues. Ku has a conserved central 'ring-shaped' core domain. While prokaryotic homologues lack the N- and C-terminal domains that impart functional diversity to eukaryotic Ku, analyses of Ku from certain prokaryotes such as Pseudomonas aeruginosa and Mycobacterium smegmatis have revealed the presence of distinct C-terminal extensions that modulate DNA-binding properties. We report in the present paper that the lysine-rich C-terminal extension of M. smegmatis Ku contacts the core protein domain as evidenced by an increase in DNA-binding affinity and a decrease in thermal stability and intrinsic tryptophan fluorescence upon its deletion. Ku deleted for this C-terminus requires free DNA ends for binding, but translocates to internal DNA sites. In contrast, full-length Ku can directly bind DNA without free ends, suggesting that this property is conferred by its C-terminus. Such binding to internal DNA sites may facilitate recruitment to sites of DNA damage. The results of the present study also suggest that extensions beyond the shared core domain may have independently evolved to expand Ku function.


Assuntos
Antígenos Nucleares/química , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Mycobacterium smegmatis , Ligação Competitiva , Clivagem do DNA , Reparo do DNA por Junção de Extremidades , DNA Bacteriano/química , Exodesoxirribonucleases/química , Autoantígeno Ku , Ligação Proteica , Estabilidade Proteica
20.
J Bacteriol ; 195(21): 4954-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995633

RESUMO

Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo , Ácido Úrico/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , DNA Intergênico , Ensaio de Desvio de Mobilidade Eletroforética , Genômica , Dados de Sequência Molecular , Filogenia , Streptomyces coelicolor/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa