Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
PLoS Pathog ; 20(4): e1012175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38640117

RESUMO

Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson's and Alzheimer's diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10-6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer's disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10-5-10-8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10-6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.


Assuntos
Proteínas Priônicas , alfa-Sinucleína , Proteínas tau , Proteínas tau/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/análise , Humanos , Proteínas Priônicas/metabolismo , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Príons/metabolismo , Doença por Corpos de Lewy/metabolismo
2.
PLoS Genet ; 19(1): e1010565, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656833

RESUMO

Fatal familial insomnia (FFI) is a rare neurodegenerative disease caused by a dominantly inherited single amino acid substitution (D178N) within the prion protein (PrP). No in vitro human brain tissue model for this disease has previously been available. Consequently, how this mutation exerts its damaging effect on brain cells is still unknown. Using CRISPR-Cas9 engineered induced pluripotent stem cells, we made D178N cerebral organoids and compared these with isotype control organoids. We found that, in the absence of other hallmarks of FFI, the D178N organoids exhibited astrogliosis with cellular oxidative stress. Abnormal post-translational processing of PrP was evident but no tissue deposition or propagation of mis-folded PrP isoforms were observed. Neuronal electrophysiological function was compromised and levels of neurotransmitters, particularly acetylcholine and GABA, altered. Underlying these dysfunctions were changes in cellular energy homeostasis, with substantially increased glycolytic and Krebs cycle intermediates, and greater mitochondrial activity. This increased energy demand in D178N organoids was associated with increased mitophagy and depletion of lipid droplets, in turn resulting in shifts of cellular lipid composition. Using a double mutation (178NN) we could confirm that most changes were caused by the presence of the mutation rather than interaction with PrP molecules lacking the mutation. Our data strongly suggests that shifting biosynthetic intermediates and oxidative stress, caused by an imbalance of energy supply and demand, results in astrogliosis with compromised neuronal activity in FFI organoids. They further support that many of the disease associated changes are due to a corruption of PrP function and do not require propagation of PrP mis-folding.


Assuntos
Insônia Familiar Fatal , Doenças Neurodegenerativas , Doenças Priônicas , Príons , Humanos , Insônia Familiar Fatal/genética , Insônia Familiar Fatal/metabolismo , Gliose/genética , Gliose/metabolismo , Doenças Neurodegenerativas/metabolismo , Príons/metabolismo , Mutação , Oxirredução , Organoides/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo
3.
PLoS Pathog ; 19(6): e1011456, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37390080

RESUMO

Abnormal deposition of α-synuclein is a key feature and biomarker of Parkinson's disease. α-Synuclein aggregates can propagate themselves by a prion-like seeding-based mechanism within and between tissues and are hypothesized to move between the intestine and brain. α-Synuclein RT-QuIC seed amplification assays have detected Parkinson's-associated α-synuclein in multiple biospecimens including post-mortem colon samples. Here we show intra vitam detection of seeds in duodenum biopsies from 22/23 Parkinson's patients, but not in 6 healthy controls by RT-QuICR. In contrast, no tau seeding activity was detected in any of the biopsies. Our seed amplifications provide evidence that the upper intestine contains a form(s) of α-synuclein with self-propagating activity. The diagnostic sensitivity and specificity for PD in this biopsy panel were 95.7% and 100% respectively. End-point dilution analysis indicated up to 106 SD50 seeding units per mg of tissue with positivity in two contemporaneous biopsies from individual patients suggesting widespread distribution within the superior and descending parts of duodenum. Our detection of α-synuclein seeding activity in duodenum biopsies of Parkinson's disease patients suggests not only that such analyses may be useful in ante-mortem diagnosis, but also that the duodenum may be a source or a destination for pathological, self-propagating α-synuclein assemblies.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , alfa-Sinucleína , Biópsia , Intestinos , Duodeno
4.
J Biol Chem ; 299(11): 105319, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37802314

RESUMO

Mis-folding of the prion protein (PrP) is known to cause neurodegenerative disease; however, the native function of this protein remains poorly defined. PrP has been linked with many cellular functions, including cellular proliferation and senescence. It is also known to influence epidermal growth factor receptor (EGFR) signaling, a pathway that is itself linked with both cell growth and senescence. Adult neural stem cells (NSCs) persist at low levels in the brain throughout life and retain the ability to proliferate and differentiate into new neural lineage cells. KO of PrP has previously been shown to reduce NSC proliferative capacity. We used PrP KO and WT NSCs from adult mouse brain to examine the influence of PrP on cellular senescence, EGFR signaling, and the downstream cellular processes. PrP KO NSCs showed decreased cell proliferation and increased senescence in in vitro cultures. Expression of EGFR was decreased in PrP KO NSCs compared with WT NSCs and additional supplementation of EGF was sufficient to reduce senescence. RNA-seq analysis confirmed that significant changes were occurring at the mRNA level within the EGFR signaling pathway and these were associated with reduced expression of mitochondrial components and correspondingly reduced mitochondrial function. Metabolomic analysis of cellular energy pathways showed that blockages were occurring at critical sites for production of energy and biomass, including catabolism of pyruvate. We conclude that, in the absence of PrP, NSC growth pathways are downregulated as a consequence of insufficient energy and growth intermediates.


Assuntos
Células-Tronco Neurais , Doenças Neurodegenerativas , Príons , Animais , Camundongos , Proliferação de Células , Senescência Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células-Tronco Neurais/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/metabolismo , Transdução de Sinais/genética , Camundongos Endogâmicos C57BL
5.
Emerg Infect Dis ; 30(6): 1193-1202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781931

RESUMO

Chronic wasting disease (CWD) is a cervid prion disease with unknown zoonotic potential that might pose a risk to humans who are exposed. To assess the potential of CWD to infect human neural tissue, we used human cerebral organoids with 2 different prion genotypes, 1 of which has previously been associated with susceptibility to zoonotic prion disease. We exposed organoids from both genotypes to high concentrations of CWD inocula from 3 different sources for 7 days, then screened for infection periodically for up to 180 days. No de novo CWD propagation or deposition of protease-resistant forms of human prions was evident in CWD-exposed organoids. Some persistence of the original inoculum was detected, which was equivalent in prion gene knockout organoids and thus not attributable to human prion propagation. Overall, the unsuccessful propagation of CWD in cerebral organoids supports a strong species barrier to transmission of CWD prions to humans.


Assuntos
Organoides , Príons , Doença de Emaciação Crônica , Doença de Emaciação Crônica/transmissão , Humanos , Príons/metabolismo , Animais , Encéfalo/patologia , Genótipo
6.
Brain ; 146(6): 2570-2583, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36975162

RESUMO

Human prion diseases are remarkable for long incubation times followed typically by rapid clinical decline. Seed amplification assays and neurodegeneration biofluid biomarkers are remarkably useful in the clinical phase, but their potential to predict clinical onset in healthy people remains unclear. This is relevant not only to the design of preventive strategies in those at-risk of prion diseases, but more broadly, because prion-like mechanisms are thought to underpin many neurodegenerative disorders. Here, we report the accrual of a longitudinal biofluid resource in patients, controls and healthy people at risk of prion diseases, to which ultrasensitive techniques such as real-time quaking-induced conversion (RT-QuIC) and single molecule array (Simoa) digital immunoassays were applied for preclinical biomarker discovery. We studied 648 CSF and plasma samples, including 16 people who had samples taken when healthy but later developed inherited prion disease (IPD) ('converters'; range from 9.9 prior to, and 7.4 years after onset). Symptomatic IPD CSF samples were screened by RT-QuIC assay variations, before testing the entire collection of at-risk samples using the most sensitive assay. Glial fibrillary acidic protein (GFAP), neurofilament light (NfL), tau and UCH-L1 levels were measured in plasma and CSF. Second generation (IQ-CSF) RT-QuIC proved 100% sensitive and specific for sporadic Creutzfeldt-Jakob disease (CJD), iatrogenic and familial CJD phenotypes, and subsequently detected seeding activity in four presymptomatic CSF samples from three E200K carriers; one converted in under 2 months while two remain asymptomatic after at least 3 years' follow-up. A bespoke HuPrP P102L RT-QuIC showed partial sensitivity for P102L disease. No compatible RT-QuIC assay was discovered for classical 6-OPRI, A117V and D178N, and these at-risk samples tested negative with bank vole RT-QuIC. Plasma GFAP and NfL, and CSF NfL levels emerged as proximity markers of neurodegeneration in the typically slow IPDs (e.g. P102L), with significant differences in mean values segregating healthy control from IPD carriers (within 2 years to onset) and symptomatic IPD cohorts; plasma GFAP appears to change before NfL, and before clinical conversion. In conclusion, we show distinct biomarker trajectories in fast and slow IPDs. Specifically, we identify several years of presymptomatic seeding positivity in E200K, a new proximity marker (plasma GFAP) and sequential neurodegenerative marker evolution (plasma GFAP followed by NfL) in slow IPDs. We suggest a new preclinical staging system featuring clinical, seeding and neurodegeneration aspects, for validation with larger prion at-risk cohorts, and with potential application to other neurodegenerative proteopathies.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Proteínas tau/metabolismo , Biomarcadores
7.
J Neuroinflammation ; 16(1): 229, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31739796

RESUMO

BACKGROUND: La Crosse virus (LACV) is the leading cause of pediatric arboviral encephalitis in the USA. LACV encephalitis can result in learning and memory deficits, which may be due to infection and apoptosis of neurons in the brain. Despite neurons being the primary cell infected in the brain by LACV, little is known about neuronal responses to infection. METHODS: Human cerebral organoids (COs), which contain a spectrum of developing neurons, were used to examine neuronal responses to LACV. Plaque assay and quantitative reverse transcription (qRT) PCR were used to determine the susceptibility of COs to LACV infection. Immunohistochemistry, flow cytometry, and single-cell transcriptomics were used to determine specific neuronal subpopulation responses to the virus. RESULTS: Overall, LACV readily infected COs causing reduced cell viability and increased apoptosis. However, it was determined that neurons at different stages of development had distinct responses to LACV. Both neural progenitors and committed neurons were infected with LACV, however, committed neurons underwent apoptosis at a higher rate. Transcriptomic analysis showed that committed neurons expressed fewer interferon (IFN)-stimulated genes (ISGs) and genes involved IFN signaling in response to infection compared to neural progenitors. Furthermore, induction of interferon signaling in LACV-infected COs by application of recombinant IFN enhanced cell viability. CONCLUSIONS: These findings indicate that neuronal maturation increases the susceptibility of neurons to LACV-induced apoptosis. This susceptibility is likely due, at least in part, to mature neurons being less responsive to virus-induced IFN as evidenced by their poor ISG response to LACV. Furthermore, exogenous administration of recombinant IFN to LACV COs rescued cellular viability suggesting that increased IFN signaling is overall protective in this complex neural tissue. Together these findings indicate that induction of IFN signaling in developing neurons is an important deciding factor in virus-induced cell death.


Assuntos
Encefalite da Califórnia/imunologia , Interferon Tipo I/imunologia , Células-Tronco Neurais/virologia , Neurônios/virologia , Apoptose/fisiologia , Células Cultivadas , Encefalite da Califórnia/patologia , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais/patologia , Neurônios/citologia , Neurônios/patologia , Organoides
8.
PLoS Pathog ; 13(9): e1006623, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28910420

RESUMO

Mammalian prion structures and replication mechanisms are poorly understood. Most synthetic recombinant prion protein (rPrP) amyloids prepared without cofactors are non-infectious or much less infectious than bona fide tissue-derived PrPSc. This effect has been associated with differences in folding of the aggregates, manifested in part by reduced solvent exclusion and protease-resistance in rPrP amyloids, especially within residues ~90-160. Substitution of 4 lysines within residues 101-110 of rPrP (central lysine cluster) with alanines (K4A) or asparagines (K4N) allows formation of aggregates with extended proteinase K (PK) resistant cores reminiscent of PrPSc, particularly when seeded with PrPSc. Here we have compared the infectivity of rPrP aggregates made with K4N, K4A or wild-type (WT) rPrP, after seeding with scrapie brain homogenate (ScBH) or normal brain homogenate (NBH). None of these preparations caused clinical disease on first passage into rodents. However, the ScBH-seeded fibrils (only) led to a subclinical pathogenesis as indicated by increases in prion seeding activity, neuropathology, and abnormal PrP in the brain. Seeding activities usually accumulated to much higher levels in animals inoculated with ScBH-seeded fibrils made with the K4N, rather than WT, rPrP molecules. Brain homogenates from subclinical animals induced clinical disease on second passage into "hamsterized" Tg7 mice, with shorter incubation times in animals inoculated with ScBH-seeded K4N rPrP fibrils. On second passage from animals inoculated with ScBH-seeded WT fibrils, we detected an additional PK resistant PrP fragment that was similar to that of bona fide PrPSc. Together these data indicate that both the central lysine cluster and scrapie seeding of rPrP aggregates influence the induction of PrP misfolding, neuropathology and clinical manifestations upon passage in vivo. We confirm that some rPrP aggregates can initiate further aggregation without typical pathogenesis in vivo. We also provide evidence that there is little, if any, biohazard associated with routine RT-QuIC assays.


Assuntos
Encéfalo/metabolismo , Lisina/metabolismo , Proteínas Priônicas/metabolismo , Scrapie/metabolismo , Amiloide/química , Animais , Encéfalo/patologia , Endopeptidase K/metabolismo , Camundongos Transgênicos , Proteínas PrPSc/metabolismo , Agregados Proteicos/fisiologia , Proteínas Recombinantes/metabolismo
9.
PLoS Pathog ; 13(7): e1006491, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704563

RESUMO

Prions, characterized by self-propagating protease-resistant prion protein (PrP) conformations, are agents causing prion disease. Recent studies generated several such self-propagating protease-resistant recombinant PrP (rPrP-res) conformers. While some cause prion disease, others fail to induce any pathology. Here we showed that although distinctly different, the pathogenic and non-pathogenic rPrP-res conformers were similarly recognized by a group of conformational antibodies against prions and shared a similar guanidine hydrochloride denaturation profile, suggesting a similar overall architecture. Interestingly, two independently generated non-pathogenic rPrP-res were almost identical, indicating that the particular rPrP-res resulted from cofactor-guided PrP misfolding, rather than stochastic PrP aggregation. Consistent with the notion that cofactors influence rPrP-res conformation, the propagation of all rPrP-res formed with phosphatidylglycerol/RNA was cofactor-dependent, which is different from rPrP-res generated with a single cofactor, phosphatidylethanolamine. Unexpectedly, despite the dramatic difference in disease-causing capability, RT-QuIC assays detected large increases in seeding activity in both pathogenic and non-pathogenic rPrP-res inoculated mice, indicating that the non-pathogenic rPrP-res is not completely inert in vivo. Together, our study supported a role of cofactors in guiding PrP misfolding, indicated that relatively small structural features determine rPrP-res' pathogenicity, and revealed that the in vivo seeding ability of rPrP-res does not necessarily result in pathogenicity.


Assuntos
Endopeptidases/química , Doenças Priônicas/metabolismo , Proteínas Priônicas/química , Animais , Biocatálise , Dimerização , Endopeptidases/metabolismo , Camundongos , Fosfatidilgliceróis/metabolismo , Doenças Priônicas/genética , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Ligação Proteica , Conformação Proteica , RNA/química , RNA/genética , RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Cell Mol Life Sci ; 75(17): 3231-3249, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29574582

RESUMO

Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.


Assuntos
Células-Tronco Adultas/metabolismo , Diferenciação Celular , Dinâmica Mitocondrial , Células-Tronco Neurais/metabolismo , Proteínas Priônicas/metabolismo , Superóxido Dismutase/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Camundongos Knockout , Camundongos Transgênicos , Oxirredução , Fragmentos de Peptídeos/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/genética , Interferência de RNA , Superóxido Dismutase/genética , Superóxidos/metabolismo
12.
PLoS Pathog ; 12(9): e1005914, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27685252

RESUMO

Hypochlorous acid (HOCl) is produced naturally by neutrophils and other cells to kill conventional microbes in vivo. Synthetic preparations containing HOCl can also be effective as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are notoriously difficult to inactivate, and standard microbial disinfection protocols are often inadequate. Recommended treatments for prion decontamination include strongly basic (pH ≥~12) sodium hypochlorite bleach, ≥1 N sodium hydroxide, and/or prolonged autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricultural and environmental applications. We have tested the anti-prion activity of a weakly acidic aqueous formulation of HOCl (BrioHOCl) that poses no apparent hazard to either users or many surfaces. For example, BrioHOCl can be applied directly to skin and mucous membranes and has been aerosolized to treat entire rooms without apparent deleterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC) assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions of ≥103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, representing reductions of ≥~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC seeding activity correlated with free chlorine concentration and higher order aggregation or destruction of proteins generally, including prion protein. BrioHOCl treatments had similar effects on amyloids composed of human α-synuclein and a fragment of human tau. These results indicate that HOCl can block the self-propagating activity of prions and other amyloids.

13.
Annu Rev Microbiol ; 67: 543-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23808331

RESUMO

Prions, or infectious proteins, represent a major frontier in the study of infectious agents. The prions responsible for mammalian transmissible spongiform encephalopathies (TSEs) are due primarily to infectious self-propagation of misfolded prion proteins. TSE prion structures remain ill-defined, other than being highly structured, self-propagating, and often fibrillar protein multimers with the capacity to seed, or template, the conversion of their normal monomeric precursors into a pathogenic form. Purified TSE prions usually take the form of amyloid fibrils, which are self-seeding ultrastructures common to many serious protein misfolding diseases such as Alzheimer's, Parkinson's, Huntington's and Lou Gehrig's (amytrophic lateral sclerosis). Indeed, recent reports have now provided evidence of prion-like propagation of several misfolded proteins from cell to cell, if not from tissue to tissue or individual to individual. These findings raise concerns that various protein misfolding diseases might have spreading, prion-like etiologies that contribute to pathogenesis or prevalence.


Assuntos
Transmissão de Doença Infecciosa , Príons/metabolismo , Deficiências na Proteostase/metabolismo , Animais , Humanos , Príons/química , Dobramento de Proteína
14.
N Engl J Med ; 371(6): 519-29, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25099576

RESUMO

BACKGROUND: Definite diagnosis of sporadic Creutzfeldt-Jakob disease in living patients remains a challenge. A test that detects the specific marker for Creutzfeldt-Jakob disease, the prion protein (PrP(CJD)), by means of real-time quaking-induced conversion (RT-QuIC) testing of cerebrospinal fluid has a sensitivity of 80 to 90% for the diagnosis of sporadic Creutzfeldt-Jakob disease. We have assessed the accuracy of RT-QuIC analysis of nasal brushings from olfactory epithelium in diagnosing sporadic Creutzfeldt-Jakob disease in living patients. METHODS: We collected olfactory epithelium brushings and cerebrospinal fluid samples from patients with and patients without sporadic Creutzfeldt-Jakob disease and tested them using RT-QuIC, an ultrasensitive, multiwell plate-based fluorescence assay involving PrP(CJD)-seeded polymerization of recombinant PrP into amyloid fibrils. RESULTS: The RT-QuIC assays seeded with nasal brushings were positive in 30 of 31 patients with Creutzfeldt-Jakob disease (15 of 15 with definite sporadic Creutzfeldt-Jakob disease, 13 of 14 with probable sporadic Creutzfeldt-Jakob disease, and 2 of 2 with inherited Creutzfeldt-Jakob disease) but were negative in 43 of 43 patients without Creutzfeldt-Jakob disease, indicating a sensitivity of 97% (95% confidence interval [CI], 82 to 100) and specificity of 100% (95% CI, 90 to 100) for the detection of Creutzfeldt-Jakob disease. By comparison, testing of cerebrospinal fluid samples from the same group of patients had a sensitivity of 77% (95% CI, 57 to 89) and a specificity of 100% (95% CI, 90 to 100). Nasal brushings elicited stronger and faster RT-QuIC responses than cerebrospinal fluid (P<0.001 for the between-group comparison of strength of response). Individual brushings contained approximately 10(5) to 10(7) prion seeds, at concentrations several logs10 greater than in cerebrospinal fluid. CONCLUSIONS: In this preliminary study, RT-QuIC testing of olfactory epithelium samples obtained from nasal brushings was accurate in diagnosing Creutzfeldt-Jakob disease and indicated substantial prion seeding activity lining the nasal vault. (Funded by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and others.).


Assuntos
Síndrome de Creutzfeldt-Jakob/diagnóstico , Mucosa Nasal/química , Príons/análise , Idoso , Encéfalo/patologia , Epitélio/química , Feminino , Fluorescência , Humanos , Técnicas de Diluição do Indicador , Masculino , Pessoa de Meia-Idade , Príons/líquido cefalorraquidiano , Sensibilidade e Especificidade
15.
PLoS Pathog ; 11(6): e1004983, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26086786

RESUMO

Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested.


Assuntos
Príons/análise , Animais , Arvicolinae , Cricetinae , Humanos , Immunoblotting , Camundongos
16.
J Biol Chem ; 290(2): 1119-28, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25416779

RESUMO

The structure of the infectious form of prion protein, PrP(Sc), remains unclear. Most pure recombinant prion protein (PrP) amyloids generated in vitro are not infectious and lack the extent of the protease-resistant core and solvent exclusion of infectious PrP(Sc), especially within residues ∼90-160. Polyanionic cofactors can enhance infectivity and PrP(Sc)-like characteristics of such fibrils, but the mechanism of this enhancement is unknown. In considering structural models of PrP(Sc) multimers, we identified an obstacle to tight packing that might be overcome with polyanionic cofactors, namely, electrostatic repulsion between four closely spaced cationic lysines within a central lysine cluster of residues 101-110. For example, in our parallel in-register intermolecular ß-sheet model of PrP(Sc), not only would these lysines be clustered within the 101-110 region of the primary sequence, but they would have intermolecular spacings of only ∼4.8 Å between stacked ß-strands. We have now performed molecular dynamics simulations predicting that neutralization of the charges on these lysine residues would allow more stable parallel in-register packing in this region. We also show empirically that substitution of these clustered lysine residues with alanines or asparagines results in recombinant PrP amyloid fibrils with extended proteinase-K resistant ß-sheet cores and infrared spectra that are more reminiscent of bona fide PrP(Sc). These findings indicate that charge neutralization at the central lysine cluster is critical for the folding and tight packing of N-proximal residues within PrP amyloid fibrils. This charge neutralization may be a key aspect of the mechanism by which anionic cofactors promote PrP(Sc) formation.


Assuntos
Amiloide/química , Lisina/química , Proteínas PrPSc/química , Doenças Priônicas/metabolismo , Amiloide/ultraestrutura , Animais , Humanos , Mesocricetus , Simulação de Dinâmica Molecular , Mutagênese , Polieletrólitos , Polímeros/química , Proteínas PrPSc/genética , Proteínas PrPSc/ultraestrutura , Doenças Priônicas/etiologia , Doenças Priônicas/patologia , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura , Eletricidade Estática
17.
J Biol Chem ; 290(35): 21510-22, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26175152

RESUMO

Human prion diseases can have acquired, sporadic, or genetic origins, each of which results in the conversion of prion protein (PrP) to transmissible, pathological forms. The genetic prion disease Gerstmann-Straussler-Scheinker syndrome can arise from point mutations of prolines 102 or 105. However, the structural effects of these two prolines, and mutations thereof, on PrP misfolding are not well understood. Here, we provide evidence that individual mutations of Pro-102 or Pro-105 to noncyclic aliphatic residues such as the Gerstmann-Straussler-Scheinker-linked leucines can promote the in vitro formation of PrP amyloid with extended protease-resistant cores reminiscent of infectious prions. This effect was enhanced by additional charge-neutralizing mutations of four nearby lysine residues comprising the so-called central lysine cluster. Substitution of these proline and lysine residues accelerated PrP conversion such that spontaneous amyloid formation was no longer slower than scrapie-seeded amyloid formation. Thus, Pro-102 and Pro-105, as well as the lysines in the central lysine cluster, impede amyloid formation by PrP, implicating these residues as key structural modulators in the conversion of PrP to disease-associated types of amyloid.


Assuntos
Amiloide/metabolismo , Lisina/metabolismo , Príons/química , Príons/metabolismo , Prolina/metabolismo , Amiloide/ultraestrutura , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sequência Conservada , Cricetinae , Endopeptidase K/metabolismo , Humanos , Cinética , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/química , Mutação , Coloração Negativa , Proteínas PrPSc/metabolismo , Príons/ultraestrutura , Desnaturação Proteica , Estrutura Secundária de Proteína , Scrapie/metabolismo , Alinhamento de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
18.
J Clin Microbiol ; 54(3): 676-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26739160

RESUMO

Prion diseases of cattle include the classical bovine spongiform encephalopathy (C-BSE) and the atypical H-type BSE (H-BSE) and L-type BSE (L-BSE) strains. Although the C- and L-BSE strains can be detected and discriminated by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays, no such test has yet been described for the detection of H-BSE or the discrimination of each of the major bovine prion strains. Here, we demonstrate an RT-QuIC assay for H-BSE that can detect as little as 10(-9) dilutions of brain tissue and neat cerebrospinal fluid samples from clinically affected cattle. Moreover, comparisons of the reactivities with different recombinant prion protein substrates and/or immunoblot band profiles of proteinase K-treated RT-QuIC reaction products indicated that H-, L-, and C-BSE have distinctive prion seeding activities and can be discriminated by RT-QuIC on this basis.


Assuntos
Encefalopatia Espongiforme Bovina/diagnóstico , Immunoblotting/métodos , Proteínas Priônicas/metabolismo , Animais , Bovinos , Proteínas Recombinantes
19.
J Biol Chem ; 289(35): 24129-42, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25028516

RESUMO

Structures of the infectious form of prion protein (e.g. PrP(Sc) or PrP-Scrapie) remain poorly defined. The prevalent structural models of PrP(Sc) retain most of the native α-helices of the normal, noninfectious prion protein, cellular prion protein (PrP(C)), but evidence is accumulating that these helices are absent in PrP(Sc) amyloid. Moreover, recombinant PrP(C) can form amyloid fibrils in vitro that have parallel in-register intermolecular ß-sheet architectures in the domains originally occupied by helices 2 and 3. Here, we provide solid-state NMR evidence that the latter is also true of initially prion-seeded recombinant PrP amyloids formed in the absence of denaturants. These results, in the context of a primarily ß-sheet structure, led us to build detailed models of PrP amyloid based on parallel in-register architectures, fibrillar shapes and dimensions, and other available experimentally derived conformational constraints. Molecular dynamics simulations of PrP(90-231) octameric segments suggested that such linear fibrils, which are consistent with many features of PrP(Sc) fibrils, can have stable parallel in-register ß-sheet cores. These simulations revealed that the C-terminal residues ∼124-227 more readily adopt stable tightly packed structures than the N-terminal residues ∼90-123 in the absence of cofactors. Variations in the placement of turns and loops that link the ß-sheets could give rise to distinct prion strains capable of faithful template-driven propagation. Moreover, our modeling suggests that single PrP monomers can comprise the entire cross-section of fibrils that have previously been assumed to be pairs of laterally associated protofilaments. Together, these insights provide a new basis for deciphering mammalian prion structures.


Assuntos
Amiloide/metabolismo , Príons/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Dissulfetos/química , Microscopia Eletrônica de Transmissão e Varredura , Modelos Moleculares , Polissacarídeos/química , Príons/química , Proteólise
20.
J Clin Microbiol ; 53(4): 1115-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609728

RESUMO

Statutory surveillance of bovine spongiform encephalopathy (BSE) indicates that cattle are susceptible to both classical BSE (C-BSE) and atypical forms of BSE. Atypical forms of BSE appear to be sporadic and thus may never be eradicated. A major challenge for prion surveillance is the lack of sufficiently practical and sensitive tests for routine BSE detection and strain discrimination. The real-time quaking-induced conversion (RT-QuIC) test, which is based on prion-seeded fibrillization of recombinant prion protein (rPrPSen), is known to be highly specific and sensitive for the detection of multiple human and animal prion diseases but not BSE. Here, we tested brain tissue from cattle affected by C-BSE and atypical L-type bovine spongiform encephalopathy (L-type BSE or L-BSE) with the RT-QuIC assay and found that both BSE forms can be detected and distinguished using particular rPrPSen substrates. Specifically, L-BSE was detected using multiple rPrPSen substrates, while C-BSE was much more selective. This substrate-based approach suggests a diagnostic strategy for specific, sensitive, and rapid detection and discrimination of at least some BSE forms.


Assuntos
Bioensaio/métodos , Encefalopatia Espongiforme Bovina/classificação , Encefalopatia Espongiforme Bovina/diagnóstico , Príons/análise , Príons/química , Animais , Química Encefálica , Bovinos , Cricetinae , Encefalopatia Espongiforme Bovina/metabolismo , Humanos , Príons/metabolismo , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa