Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 31(10): 2421-2430, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32996763

RESUMO

Immunotoxins are emerging candidates for cancer therapeutics. These biomolecules consist of a cell-targeting protein combined to a polypeptide toxin. Associations of both entities can be achieved either chemically by covalent bonds or genetically creating fusion proteins. However, chemical agents can affect the activity and/or stability of the conjugate proteins, and additional purification steps are often required to isolate the final conjugate from unwanted byproducts. As for fusion proteins, they often suffer from low solubility and yield. In this report, we describe a straightforward conjugation process to generate an immunotoxin using coassociating peptides (named K3 and E3), originating from the tetramerization domain of p53. To that end, a nanobody targeting the human epidermal growth factor receptor 2 (nano-HER2) and a protein toxin fragment from Pseudomonas aeruginosa exotoxin A (TOX) were genetically fused to the E3 and K3 peptides. Entities were produced separately in Escherichia coli in soluble forms and at high yields. The nano-HER2 fused to the E3 or K3 helixes (nano-HER2-E3 and nano-HER2-K3) and the coassembled immunotoxins (nano-HER2-K3E3-TOX and nano-HER2-E3K3-TOX) presented binding specificity on HER2-overexpressing cells with relative binding constants in the low nanomolar to picomolar range. Both toxin modules (E3-TOX and K3-TOX) and the combined immunotoxins exhibited similar cytotoxicity levels compared to the toxin alone (TOX). Finally, nano-HER2-K3E3-TOX and nano-HER2-E3K3-TOX evaluated on various breast cancer cells were highly potent and specific to killing HER2-overexpressing breast cancer cells with IC50 values in the picomolar range. Altogether, we demonstrate that this noncovalent conjugation method using two coassembling peptides can be easily implemented for the modular engineering of immunotoxins targeting different types of cancers.


Assuntos
ADP Ribose Transferases/farmacologia , Antineoplásicos/farmacologia , Toxinas Bacterianas/farmacologia , Exotoxinas/farmacologia , Imunotoxinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Anticorpos de Domínio Único/farmacologia , Fatores de Virulência/farmacologia , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , Antineoplásicos/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Exotoxinas/química , Exotoxinas/genética , Feminino , Humanos , Imunotoxinas/química , Imunotoxinas/genética , Modelos Moleculares , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Fatores de Virulência/química , Fatores de Virulência/genética , Exotoxina A de Pseudomonas aeruginosa
2.
Nanotechnology ; 30(18): 184005, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-30650397

RESUMO

Therapeutic monoclonal antibodies benefit to patients and the conjugation to gold nanoparticles (AuNPs) might bring additional activities to these macromolecules. However, the behavior of the conjugate will largely depend on the bulkiness of the AuNP and small sizes are moreover preferable for diffusion. Water-soluble thiolate-protected AuNPs having diameters of 2-3 nm can be synthesized with narrow polydispersity and can selectively react with incoming organic thiols via a SN2-like mechanism. We therefore synthesized a mixed thionitrobenzoic acid- , thioaminobenzoic acid-monolayered AuNP of 2.4 nm in diameter and developed a site-selective conjugation strategy to link the AuNP to Cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody used in clinic. The water-soluble 80 kDa AuNP was fully characterized and then reacted to the hinge area of Cetuximab, which was selectively reduced using mild concentration of TCEP. The conjugation proceeded smoothly and could be analyzed by polyacrylamide gel electrophoresis, indicating the formation of a 1:1 AuNP-IgG conjugate as the main product. When added to EGFR expressing glioblastoma cells, the AuNP-Cetuximab conjugate selectively bound to the cell surface receptor, inhibited EGFR autophosphorylation and entered into endosomes like Cetuximab. Altogether, we describe a simple and robust protocol for a site-directed conjugation of a thiolate-protected AuNP to Cetuximab, which could be easily monitored, thereby allowing to assess the quality of the product formation. The conjugated 2.4 nm AuNP did not majorly affect the biological behavior of Cetuximab, but provided it with the electronic properties of the AuNP. This offers the ability to detect the tagged antibody and opens application for targeted cancer radiotherapy.


Assuntos
Cetuximab , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Ouro , Nanopartículas Metálicas , Linhagem Celular Tumoral , Cetuximab/química , Cetuximab/farmacologia , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Ouro/química , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Proteínas de Neoplasias/metabolismo , Tamanho da Partícula
3.
J Pept Sci ; 23(12): 871-879, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29105901

RESUMO

A prominent target of monoclonal antibodies as targeted therapies for cancer is the epidermal growth factor receptor, which is overexpressed on the surface of various cancer cell types. Its natural binder, the epidermal growth factor (EGF), is a 53 amino acid polypeptide. Anticancer synthetic targeted immune system engagers (ISErs) comprising two 'binder' peptides, which are attached to a scaffold conveying immune stimulating 'effector' properties, via monodisperse polyethylene glycol chains. So far, preparation of ISErs has been limited to the use of small peptides (8-20 amino acids) as binding functionalities, and they have been entirely synthesized by solid phase peptide synthesis. Here, we describe a synthetic and a semisynthetic approach for the preparation of an ISEr bearing two murine EGF molecules as binding entities (ISEr-EGF2 ). EGF was either synthesized in segments by solid phase peptide synthesis or expressed recombinantly and ligated to the scaffold by native chemical ligation. We report the successful generation of synthetic and semisynthetic ISEr-EGF2 as well as several challenges encountered during the synthesis and ligations. We demonstrate the application of native chemical ligation for the design of larger ISEr constructs, facilitating new objectives for the coupling of small binder peptides and larger proteins to multivalent ISEr scaffolds. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/síntese química , Fator de Crescimento Epidérmico/metabolismo , Peptídeos/síntese química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Clonagem Molecular , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/genética , Humanos , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Técnicas de Síntese em Fase Sólida
4.
Small Methods ; 7(6): e2300098, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37035956

RESUMO

Advances in cryo-electron microscopy (EM) enable imaging of protein assemblies within mammalian cells in a near native state when samples are preserved by cryogenic vitrification. To accompany this progress, specialized EM labelling protocols must be developed. Gold nanoparticles (AuNPs) of 2 nm are synthesized and functionalized to bind selected intracellular targets inside living human cells and to be detected in vitreous sections. As a proof of concept, thioaminobenzoate-, thionitrobenzoate-coordinated gold nanoparticles are functionalized on their surface with SV40 Nuclear Localization Signal (NLS)-containing peptides and 2 kDa polyethyleneglycols (PEG) by thiolate exchange to target the importin-mediated nuclear machinery and facilitate cytosolic diffusion by shielding the AuNP surface from non-specific binding to cell components, respectively. After delivery by electroporation into the cytoplasm of living human cells, the PEG-coated AuNPs diffuse freely in the cytoplasm but do not enter the nucleus. Incorporation of NLS within the PEG coverage promotes a quick nuclear import of the nanoparticles in relation to the density of NLS onto the AuNPs. Cryo-EM of vitreous cell sections demonstrate the presence of 2 nm AuNPs as single entities in the nucleus. Biofunctionalized AuNPs combined with live-cell electroporation procedures are thus potent labeling tools for the identification of macromolecules in cellular cryo-EM.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Humanos , Ouro/química , Microscopia Crioeletrônica , Nanopartículas Metálicas/química , Núcleo Celular/metabolismo , Mamíferos/metabolismo
5.
Nanoscale Adv ; 3(24): 6940-6948, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36132366

RESUMO

Advances in microscopy technology have prompted efforts to improve the reagents required to recognize specific molecules within the intracellular environment. For high-resolution electron microscopy, conjugation of selective binders originating from the immune response arsenal to gold nanoparticles (AuNPs) as contrasting agents is the method of choice to obtain labeling tools. However, conjugation of the minimal sized 15 kDa nanobody (Nb) to AuNPs remains challenging in comparison to the conjugation of 150 kDa IgG to AuNPs. Herein, effective Nb-AuNP assemblies are built using the selective and almost irreversible non-covalent associations between two peptide sequences deriving from a p53 heterotetramer domain variant. The 15 kDa GFP-binding Nb is fused to one dimerizing motif to obtain a recombinant Nb dimer with improved avidity for GFP while the other complementing dimerizing motif is equipped with thiols and grafted to a 2.4 nm substituted thiobenzoate-coordinated AuNP via thiolate exchange. After pegylation, the modified AuNPs are able to non-covalently anchor Nb dimers and the subsequent complexes demonstrate the ability to form immunogold label GFP-protein fusions within various subcellular locations. These tools open an avenue for precise localization of targets at high resolution by electron microscopy.

6.
Front Chem ; 7: 113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30895175

RESUMO

Chemoselective ligations allow chemical biologists to functionalise proteins and peptides for biomedical applications and to probe biological processes. Coupled with solid phase peptide synthesis, chemoselective ligations enable not only the design of homogeneous proteins and peptides with desired natural and unnatural modifications in site-specific locations but also the design of new peptide and protein topologies. Although several well-established ligations are available, each method has its own advantages and disadvantages and they are seldom used in combination. Here we have applied copper-catalyzed azide-alkyne "click," oxime, maleimide, and native chemical ligations to develop a modular synthesis of branched peptide and polymer constructs that act as cancer-targeting immune system engagers (ISErs) and functionalised them for detection in biological systems. We also note some potential advantages and pitfalls of these chemoselective ligations to consider when designing orthogonal ligation strategies. The modular synthesis and functionalization of ISErs facilitates optimisation of their activity and mechanism of action as potential cancer immunotherapies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa