Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 194(2): 518-28, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22081395

RESUMO

Diauxic growth was observed in anaerobic C(4)-dicarboxylate-adapted cells of "Aromatoleum aromaticum" EbN1 due to preferred benzoate utilization from a substrate mixture of a C(4)-dicarboxylate (succinate, fumarate, or malate) and benzoate. Differential protein profiles (two-dimensional difference gel electrophoresis [2D DIGE]) revealed dynamic changes in abundance for proteins involved in anaerobic benzoate catabolism and C(4)-dicarboxylate uptake. In the first active growth phase, benzoate utilization was paralleled by maximal abundance of proteins involved in anaerobic benzoate degradation (e.g., benzoyl-coenzyme A [CoA] reductase) and minimal abundance of DctP (EbA4158), the periplasmic binding protein of a predicted C(4)-dicarboxylate tripartite ATP-independent periplasmic (TRAP) transporter (DctPQM). The opposite was observed during subsequent succinate utilization in the second active growth phase. The increased dctP (respectively, dctPQM) transcript and DctP protein abundance following benzoate depletion suggests that repression of C(4)-dicarboxylate uptake seems to be a main determinant for the observed diauxie.


Assuntos
Acetatos/metabolismo , Benzoatos/metabolismo , Betaproteobacteria/metabolismo , Carbono/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Betaproteobacteria/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Filogenia
2.
Environ Microbiol ; 13(5): 1370-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21392199

RESUMO

Anaerobic oxidation of methane (AOM) with sulfate is catalysed by microbial consortia of archaea and bacteria affiliating with methanogens and sulfate-reducing Deltaproteobacteria respectively. There is evidence that methane oxidation is catalysed by enzymes related to those in methanogenesis, but the enzymes for sulfate reduction coupled to AOM have not been examined. We collected microbial mats with high AOM activity from a methane seep in the Black Sea. The mats consisted mainly of archaea of the ANME-2 group and bacteria of the Desulfosarcina-Desulfococcus group. Cell-free mat extract contained activities of enzymes involved in sulfate reduction to sulfide: ATP sulfurylase (adenylyl : sulfate transferase; Sat), APS reductase (Apr) and dissimilatory sulfite reductase (Dsr). We partially purified the enzymes by anion-exchange chromatography. The amounts obtained indicated that the enzymes are abundant in the mat, with Sat accounting for 2% of the soluble mat protein. N-terminal amino acid sequences of purified proteins suggested similarities to the corresponding enzymes of known species of sulfate-reducing bacteria. The deduced amino acid sequence of PCR-amplified genes of the Apr subunits is similar to that of Apr of the Desulfosarcina/Desulfococcus group. These results indicate that the major enzymes involved in sulfate reduction in the Back Sea microbial mats are of bacterial origin, most likely originating from the bacterial partner in the consortium.


Assuntos
Archaea/classificação , Sulfito de Hidrogênio Redutase/metabolismo , Metano/metabolismo , Consórcios Microbianos , Bactérias Redutoras de Enxofre/enzimologia , Sequência de Aminoácidos , Anaerobiose , Archaea/genética , Archaea/metabolismo , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Mar Negro , Deltaproteobacteria/classificação , Deltaproteobacteria/enzimologia , Sulfito de Hidrogênio Redutase/isolamento & purificação , Dados de Sequência Molecular , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/isolamento & purificação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Sulfato Adenililtransferase/isolamento & purificação , Sulfato Adenililtransferase/metabolismo , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética
3.
Environ Microbiol ; 10(2): 376-85, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17961174

RESUMO

Strain HxN1, a member of the Betaproteobacteria, can grow anaerobically by denitrification with n-alkanes. n-Alkanes are apparently activated by subterminal carbon addition to fumarate yielding (1-methylalkyl)succinates, the postulated enzyme being (1-methylalkyl)succinate synthase (Mas). Genes encoding this enzyme (mas) were searched for via proteins that were specifically formed in n-hexane-grown cells (in comparison with caproate-grown cells), as revealed by two-dimensional gel electrophoresis. Partial amino acid sequencing and subsequent probe development for hybridization of restricted DNA led to the identification of a gene cluster. Deduced proteins are similar to the subunits of benzylsuccinate synthase (Bss), the toluene-activating enzyme in other anaerobic bacteria and its activase. The tentative (1-methylalkyl)succinate synthase is presumably a heterotrimer (MasDEC) which, like benzylsuccinate synthase, contains a motif (in MasD, the large subunit) characteristic of glycyl radical-bearing sites. Based on amino acid sequence comparison, the tentative (1-methylalkyl)succinate synthase branches outside of the phylogenetic cluster of benzylsuccinate synthases from different organisms and represents a separate line of descent within glycyl radical enzymes. n-Hexane-induced co-transcription of the mas genes and additional genes of an apparent operon was demonstrated by Northern hybridization experiments.


Assuntos
Alcanos/metabolismo , Betaproteobacteria/enzimologia , Carbono-Carbono Liases/metabolismo , Genes Bacterianos , Nitritos/metabolismo , Succinatos/metabolismo , Anaerobiose , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Betaproteobacteria/genética , Betaproteobacteria/crescimento & desenvolvimento , Carbono-Carbono Liases/química , Carbono-Carbono Liases/genética , Eletroforese em Gel Bidimensional , Regulação Bacteriana da Expressão Gênica , Hexanos/metabolismo , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA
4.
Mol Biol Cell ; 14(10): 4272-84, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14517335

RESUMO

In baker's yeast Saccharomyces cerevisiae, cell-cell and cell-surface adhesion are required for haploid invasive growth and diploid pseudohyphal development. These morphogenetic events are induced by starvation for glucose or nitrogen and require the cell surface protein Flo11p. We show that amino acid starvation is a nutritional signal that activates adhesive growth and expression of FLO11 in both haploid and diploid strains in the presence of glucose and ammonium, known suppressors of adhesion. Starvation-induced adhesive growth requires Flo11p and is under control of Gcn2p and Gcn4p, elements of the general amino acid control system. Tpk2p and Flo8p, elements of the cAMP pathway, are also required for activation but not Ste12p and Tec1p, known targets of the mitogen-activated protein kinase cascade. Promoter analysis of FLO11 identifies one upstream activation sequence (UASR) and one repression site (URS) that confer regulation by amino acid starvation. Gcn4p is not required for regulation of the UASR by amino acid starvation, but seems to be indirectly required to overcome the negative effects of the URS on FLO11 transcription. In addition, Gcn4p controls expression of FLO11 by affecting two basal upstream activation sequences (UASB). In summary, our study suggests that amino acid starvation is a nutritional signal that triggers a Gcn4p-controlled signaling pathway, which relieves repression of FLO11 gene expression and induces adhesive growth.


Assuntos
Aminoácidos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Northern Blotting , Adesão Celular/fisiologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Glicoproteínas de Membrana , Modelos Moleculares , Proteínas Nucleares , Plasmídeos , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases , Compostos de Amônio Quaternário/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Inanição/metabolismo , Transativadores , Fatores de Transcrição/metabolismo
5.
ISME J ; 7(5): 885-95, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23254512

RESUMO

The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.


Assuntos
Butanos/metabolismo , Deltaproteobacteria/classificação , Deltaproteobacteria/fisiologia , Sedimentos Geológicos/microbiologia , Propano/metabolismo , Anaerobiose , Temperatura Baixa , DNA Bacteriano/genética , Deltaproteobacteria/genética , México , Filogenia , RNA Ribossômico 16S/genética
6.
Environ Microbiol Rep ; 3(1): 125-135, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21837252

RESUMO

Microorganisms can degrade saturated hydrocarbons (alkanes) not only under oxic but also under anoxic conditions. Three denitrifying isolates (strains HxN1, OcN1, HdN1) able to grow under anoxic conditions by coupling alkane oxidation to CO(2) with NO(3) (-) reduction to N(2) were compared with respect to their alkane metabolism. Strains HxN1 and OcN1, which are both Betaproteobacteria, utilized n-alkanes from C(6) to C(8) and C(8) to C(12) respectively. Both activate alkanes anaerobically in a fumarate-dependent reaction yielding alkylsuccinates, as suggested by present and previous metabolite and gene analyses. However, strain HdN1 was unique in several respects. It belongs to the Gammaproteobacteria and was more versatile towards alkanes, utilizing the range from C(6) to C(30). Neither analysis of metabolites nor analysis of genes in the complete genome sequence of strain HdN1 hinted at fumarate-dependent alkane activation. Moreover, whereas strains HxN1 and OcN1 grew with alkanes and NO(3) (-), NO(2) (-) or N(2)O added to the medium, strain HdN1 oxidized alkanes only with NO(3) (-) or NO(2) (-) but not with added N(2)O; but N(2)O was readily used for growth with long-chain alcohols or fatty acids. Results suggest that NO(2) (-) or a subsequently formed nitrogen compound other than N(2)O is needed for alkane activation in strain HdN1. From an energetic point of view, nitrogen-oxygen species are generally rather strong oxidants. They may enable enzymatic mechanisms that are not possible under conditions of sulfate reduction or methanogenesis and thus allow a special mode of alkane activation.

7.
Mol Genet Genomics ; 273(5): 382-93, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15843968

RESUMO

The ability to adhere to other cells is one of the most prominent determinants of fungal pathogenicity. Thus, adherence of fungi to human tissues or plastics triggers hospital-acquired fungal infections, which are an increasing clinical problem, especially in immunocompromised persons. In the model fungus Saccharomyces cerevisiae adhesion can be induced by starvation for amino acids, and depends on the transcriptional activator of the general amino acid control system, Gcn4p. However, not much is known about the transcriptional program that mediates adhesive growth under such conditions. In this study, we present a genome-wide transcriptional analysis of Sigma1278b yeast cells that were subjected to adhesion-inducing conditions imposed by amino acid starvation. Twenty-two novel genes were identified as inducible by amino acid starvation; 72 genes belonging to different functional groups, which were not previously known to be regulated by Gcn4p, require Gcn4p for full transcriptional induction under adhesion-inducing conditions. In addition, several genes were identified in Sigma1278b cells that were inducible by amino acid starvation in a Gcn4p-independent manner. Our data suggest that adhesion of yeast cells induced by amino acid starvation is regulated by a complex, Sigma1278b-specific transcriptional response.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal , Northern Blotting , Adesão Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Bases de Dados Genéticas , Diploide , Relação Dose-Resposta a Droga , Proteínas Fúngicas , Genoma Fúngico , Genótipo , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Temperatura , Fatores de Tempo , Fatores de Transcrição
8.
J Gen Appl Microbiol ; 44(5): 327-335, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12501412

RESUMO

A chromosomal DNA fragment with a length of 2,025 bp, carrying the structural gene coding for glucoamylase in Thermoanaerobacterium thermosaccharolyticum, was cloned and sequenced. It coded for 695 amino acids, representing a polypeptide with a predicted molecular mass of 77.5 kDa. The deduced amino acid sequence exhibited high homologies with the glucoamylase sequence of another bacterial glucoamylase (Clostridium sp. G0005) and with fungal glucoamylases. The catalytic domain (amino acids 271 to 695) of the T. thermosaccharolyticum enzyme shared a high degree of similarity (five conserved regions) with the catalytic domain of Aspergillus awamori glucoamylase. By comparing the secondary structure of the sequence of the catalytic domain of the T. thermosaccharolyticum enzyme with that of glucoamylase from A. awamori, and on the basis of X-ray crystallographic data available for the A. awamori enzyme, it turned out that, most probably, both enzymes have a catalytic domain organized into an "(alpha/alpha)(6)-barrel" and an overall size and shape that is very similar. These findings confirm and extend our working model for the macromolecular architecture of the T. thermosaccharolyticum glucoamylase obtained, in earlier experiments, by electron microscopy of negatively stained isolated enzyme molecules. Antibodies for an enzyme-specific peptide located near the active site were successfully applied for inhibition studies of enzyme activity and for electron microscopic epitope mapping. A study comparing the site of attachment of this kind of antibody to the T. thermosaccharolyticum glucoamylase molecule with the expected attachment site as deduced from the A. awamori enzyme structure confirmed the close similarity of both glucoamylases regarding the macromolecular architecture of that part of the enzyme carrying the catalytic center, though helices H9, H10, and H11 in peripheral parts of the A. awamori enzyme are missing in the T. thermosaccharolyticum enzyme.

9.
Eukaryot Cell ; 1(5): 663-72, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12455686

RESUMO

The c-Jun-like transcriptional activator Gcn4p controls biosynthesis of translational precursors in the yeast Saccharomyces cerevisiae. Protein stability is dependent on amino acid limitation and cis signals within Gcn4p which are recognized by cyclin-dependent protein kinases, including Pho85p. The Gcn4p population within unstarved yeast consists of a small relatively stable cytoplasmic fraction and a larger less stable nuclear fraction. Gcn4p contains two nuclear localization signals (NLS) which function independently of the presence or absence of amino acids. Expression of NLS-truncated Gcn4p results in an increased cytoplasmic fraction and an overall stabilization of the protein. The same effect is achieved for the entire Gcn4p in a yrb1 yeast mutant strain impaired in the nuclear import machinery. In the presence of amino acids, controlled destabilization of Gcn4p is triggered by the phosphorylation activity of Pho85p. A pho85delta mutation stabilizes Gcn4p without affecting nuclear import. Pho85p is localized within the nucleus in the presence or absence of amino acids. Therefore, there is a strict spatial separation of protein synthesis and degradation of Gcn4p in yeast. Control of protein stabilization which antagonizes Gcn4p function is restricted to the nucleus.


Assuntos
Aminoácidos/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Sinais de Localização Nuclear/química , Proteínas Quinases/química , Proteínas Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa