Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Anal Biochem ; 689: 115498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423238

RESUMO

We studied the spectral properties of 4'-6-diamidino-2-phenylindole (DAPI) in poly (vinyl alcohol) (PVA) films. Absorption and fluorescence spectra, emission and excitation spectra, quantum yield, and fluorescence lifetime have been characterized. An efficient room temperature phosphorescence (RTP) of DAPI has been observed with UV and blue light excitations. A few hundred millisecond phosphorescence lifetime enables a gated detection with sufficient background reduction. We found the phosphorescent Quantum Yield of DAPI in PVA Film to be 0.0009.


Assuntos
Indóis , Temperatura , Espectrometria de Fluorescência
2.
Luminescence ; 39(8): e4865, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39160141

RESUMO

We studied spectral properties of 1,N2-etheno-2-aminopurine after immobilization in poly (vinyl alcohol) films. The absorption spectrum of 1,N2-ε2APu consists of two peaks centered at 300 and 370 nm, and the fluorescence spectrum has maximum at about 460 nm. The fluorescence quantum efficiency is 62%. The fluorescence anisotropy reaches a value of 0.3 at longer wavelengths, while it is low at shorter wavelengths (corresponding to the second single excited state). The 1,N2-ε2APu has a relatively long fluorescence lifetime of about 16 ns and a noticeable room temperature phosphorescence with a lifetime of about 220 ms. A broad phosphorescence emission band (425-675 nm) is centered at about 530 nm and markedly overlaps with fluorescence at shorter wavelengths. Surprisingly, the phosphorescence excitation spectrum of 1,N2-ε2APu-doped poly (vinyl alcohol) film differs from the absorption and fluorescence excitation spectra. The strongest room temperature phosphorescence excitation is about 335 nm. At longer excitation wavelengths, above 450 nm, where fluorescence cannot be excited, a triplet excitation is still possible. The 1,N2-ε2APu phosphorescence anisotropy spectra confirm direct triplet state excitation. The ability to excite molecules at long wavelengths can find applications in the study of biological molecules that are unstable when excited at high energies.


Assuntos
Luminescência , Álcool de Polivinil , Temperatura , Álcool de Polivinil/química , Espectrometria de Fluorescência , Medições Luminescentes , 2-Aminopurina/química , Estrutura Molecular
3.
Eur Biophys J ; 52(6-7): 593-605, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37140595

RESUMO

A novel approach is presented that increases sensitivity and specificity for detecting minimal traces of DNA in liquid and on solid samples. Förster Resonance Energy Transfer (FRET) from YOYO to Ethidium Bromide (EtBr) substantially increases the signal from DNA-bound EtBr highly enhancing sensitivity and specificity for DNA detection. The long fluorescence lifetime of the EtBr acceptor, when bound to DNA, allows for multi-pulse pumping with time gated (MPPTG) detection, which highly increases the detectable signal of DNA-bound EtBr. A straightforward spectra/image subtraction eliminates sample background and allows for a huge increase in the overall detection sensitivity. Using a combination of FRET and MPPTG detection an amount as small as 10 pg of DNA in a microliter sample can be detected without any additional sample purification/manipulation or use of amplification technologies. This amount of DNA is comparable to the DNA content of a one to two human cells. Such a detection method based on simple optics opens the potential for robust, highly sensitive DNA detection/imaging in the field, quick evaluation/sorting (i.e., triaging) of collected DNA samples, and can support various diagnostic assays.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Substâncias Intercalantes , Humanos , Transferência Ressonante de Energia de Fluorescência/métodos , DNA , Sensibilidade e Especificidade
4.
Anal Chem ; 94(12): 5062-5068, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35286067

RESUMO

This article presents a novel approach to increase the detection sensitivity of trace amounts of DNA in a sample by employing Förster resonance energy transfer (FRET) between intercalating dyes. Two intercalators that present efficient FRET were used to enhance sensitivity and improve specificity in detecting minute amounts of DNA. Comparison of steady-state acceptor emission spectra with and without the donor allows for simple and specific detection of DNA (acceptor bound to DNA) down to 100 pg/µL. When utilizing as an acceptor a dye with a significantly longer lifetime (e.g., ethidium bromide bound to DNA), multipulse pumping and time-gated detection enable imaging/visualization of picograms of DNA present in a microliter of an unprocessed sample or DNA collected on a swab or other substrate materials.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Substâncias Intercalantes , Corantes , DNA/genética , Etídio , Corantes Fluorescentes
5.
Analyst ; 146(21): 6520-6527, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34559174

RESUMO

This report presents a novel approach for detecting and visualizing small to trace amounts of DNA in a sample. By utilizing both the change in emission spectrum and change in fluorescence lifetime, there is a significant increase in detection sensitivity allowing for the imaging/visualizing of a picograms amount of DNA in a microliters volume. As in the previous reports, one of the oldest DNA intercalators, Ethidium Bromide (EtBr), is employed as a model system. With this new approach, it is feasible to visualize just a few hundred picograms of DNA without the need for prior DNA amplification. The sensitivity can later be largely improved by using an intercalator that exhibits a higher affinity to DNA and a larger fluorescence change upon binding to DNA (e.g., ethidium homodimer, YOYO, or Diamond nucleic acid dyes).


Assuntos
DNA , Substâncias Intercalantes , DNA/genética , Técnicas de Amplificação de Ácido Nucleico
6.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299377

RESUMO

The results of time-resolved fluorescence measurements of flavin mononucleotide (FMN) in rigid polyvinyl alcohol films (PVA) demonstrate that fluorescence intensity decays are strongly accelerated in the presence of fluorescent dimers and nonradiative energy transfer processes. The fluorescence decay originating both from H and J dimer states of FMN was experimentally observed for the first time. The mean fluorescence lifetimes for FMN dimers were obtained: τfl = 2.66 ns (at λexc = 445 nm) and τfl = 2.02 (at λexc = 487 nm) at λobs = 600 nm and T = 253 K from H and J state of dimers, respectively. We show that inhomogeneous orientational broadening of energy levels (IOBEL) affects the shape of the fluorescence decay and leads to the dependence of the average monomer fluorescence lifetime on excitation wavelength. IOBEL affected the nonradiative energy transfer and indicated that different flavin positioning in the protein pocket could (1) change the spectroscopic properties of flavins due to the existence of "blue" and "red" fluorescence centers, and (2) diminish the effectiveness of energy transfer between FMN molecules.


Assuntos
Mononucleotídeo de Flavina/química , Álcool de Polivinil/química , Dimerização , Transferência de Energia , Polarização de Fluorescência/métodos , Polímeros/química , Espectrometria de Fluorescência/métodos
7.
J Pharmacol Exp Ther ; 373(1): 113-121, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31941718

RESUMO

Reconstituted high-density lipoprotein (HDL) containing apolipoprotein A-I (Apo A-I) mimics the structure and function of endogenous (human plasma) HDL due to its function and potential therapeutic utility in atherosclerosis, cancer, neurodegenerative diseases, and inflammatory diseases. Recently, a new class of HDL mimetics has emerged, involving peptides with amino acid sequences that simulate the the primary structure of the amphipathic alpha helices within the Apo A-I protein. The findings reported in this communication were obtained using a similar amphiphilic peptide (modified via conjugation of a myristic acid residue at the amino terminal aspartic acid) that self-assembles (by itself) into nanoparticles while retaining the key features of endogenous HDL. The studies presented here involve the macromolecular assembly of the myristic acid conjugated peptide (MYR-5A) into nanomicellar structures and its characterization via steady-state and time-resolved fluorescence spectroscopy. The structural differences between the free peptide (5A) and MYR-5A conjugate were also probed, using tryptophan fluorescence, FÓ§rster resonance energy transfer (FRET), dynamic light scattering, and gel exclusion chromatography. To our knowledge, this is the first report of a lipoprotein assembly generated from a single ingredient and without a separate lipid component. The therapeutic utility of these nanoparticles (due to their capablity to incorporate a wide range of drugs into their core region for targeted delivery) was also investigated by probing the role of the scavenger receptor type B1 in this process. SIGNIFICANCE STATEMENT: Although lipoproteins have been considered as effective drug delivery agents, none of these nanoformulations has entered clinical trials to date. A major challenge to advancing lipoprotein-based formulations to the clinic has been the availability of a cost-effective protein or peptide constituent, needed for the assembly of the drug/lipoprotein nanocomplexes. This report of a robust, spontaneously assembling drug transport system from a single component could provide the template for a superior, targeted drug delivery strategy for therapeutics of cancer and other diseases (Counsell and Pohland, 1982).


Assuntos
Materiais Biomiméticos/química , Portadores de Fármacos/química , Lipoproteínas HDL/química , Nanopartículas/química , Espectrometria de Fluorescência/métodos , Sequência de Aminoácidos , Materiais Biomiméticos/análise , Portadores de Fármacos/análise , Lipoproteínas HDL/análise , Lipoproteínas HDL/genética , Nanopartículas/análise
8.
Analyst ; 143(12): 2819-2827, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29774908

RESUMO

Fluorescence signal enhancement induced by the binding of intercalators to DNA has been broadly utilized in various DNA detection methods. In most instances the increase in fluorescence intensity is associated with a concomitant increase of fluorescence lifetime. This increase of the fluorescence lifetime presents an additional opportunity to increase detection sensitivity. In this paper, we present a new approach to significantly enhance the sensitivity in detecting minute DNA concentrations. The approach is based on simultaneous use of time-gated detection and multi-pulse pumping. By using a calibrated burst of short pulses we greatly enhance the contribution of long-lived fluorescence species, thus enabling easy time-gated detection. Using a classic DNA intercalator - Ethidium Bromide (EtBr) - as an example with our novel multi-pulse pumping and time-gated detection technique, we were able to increase detection sensitivity over 70-fold with only 3 pulse excitation. This approach is generic and can be used with any analytical probe (exhibiting about 10 times change in lifetime) that shows an increase in fluorescence signal and fluorescence lifetime upon binding to a target.


Assuntos
DNA/análise , Substâncias Intercalantes/química , Espectrometria de Fluorescência , Etídio
9.
J Nanobiotechnology ; 16(1): 12, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29433518

RESUMO

BACKGROUND: The process of optimization and fabrication of nanoparticle synthesis for preclinical studies can be challenging and time consuming. Traditional small scale laboratory synthesis techniques suffer from batch to batch variability. Additionally, the parameters used in the original formulation must be re-optimized due to differences in fabrication techniques for clinical production. Several low flow microfluidic synthesis processes have been reported in recent years for developing nanoparticles that are a hybrid between polymeric nanoparticles and liposomes. However, use of high flow microfluidic synthetic techniques has not been described for this type of nanoparticle system, which we will term as nanolipomer. In this manuscript, we describe the successful optimization and functional assessment of nanolipomers fabricated using a microfluidic synthesis method under high flow parameters. RESULTS: The optimal total flow rate for synthesis of these nanolipomers was found to be 12 ml/min and flow rate ratio 1:1 (organic phase: aqueous phase). The PLGA polymer concentration of 10 mg/ml and a DSPE-PEG lipid concentration of 10% w/v provided optimal size, PDI and stability. Drug loading and encapsulation of a representative hydrophobic small molecule drug, curcumin, was optimized and found that high encapsulation efficiency of 58.8% and drug loading of 4.4% was achieved at 7.5% w/w initial concentration of curcumin/PLGA polymer. The final size and polydispersity index of the optimized nanolipomer was 102.11 nm and 0.126, respectively. Functional assessment of uptake of the nanolipomers in C4-2B prostate cancer cells showed uptake at 1 h and increased uptake at 24 h. The nanolipomer was more effective in the cell viability assay compared to free drug. Finally, assessment of in vivo retention in mice of these nanolipomers revealed retention for up to 2 h and were completely cleared at 24 h. CONCLUSIONS: In this study, we have demonstrated that a nanolipomer formulation can be successfully synthesized and easily scaled up through a high flow microfluidic system with optimal characteristics. The process of developing nanolipomers using this methodology is significant as the same optimized parameters used for small batches could be translated into manufacturing large scale batches for clinical trials through parallel flow systems.


Assuntos
Antineoplásicos/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos/química , Dispositivos Lab-On-A-Chip , Lipossomos/química , Nanopartículas/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacocinética , Curcumina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Desenho de Equipamento , Humanos , Ácido Láctico/química , Masculino , Camundongos , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Neoplasias da Próstata/tratamento farmacológico
10.
J Fluoresc ; 27(5): 1621-1631, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28432632

RESUMO

Five variants of glucokinase (ATP-D-hexose-6-phosphotransferase, EC 2.7.1.1) including wild type and single Trp mutants with the Trp residue at positions 65, 99, 167 and 257 were prepared. The fluorescence of Trp in all locations studied showed intensity changes when glucose bound, indicating that conformational change occurs globally over the entire protein. While the fluorescence quantum yield changes upon glucose binding, the enzyme's absorption spectra, emission spectra and fluorescence lifetimes change very little. These results are consistent with the existence of a dark complex for excited state Trp. Addition of glycerol, L-glucose, sucrose, or trehalose increases the binding affinity of glucose to the enzyme and increases fluorescence intensity. The effect of these osmolytes is thought to shift the protein conformation to a condensed, high affinity form. Based upon these results, we consider the nature of quenching of the Trp excited state. Amide groups are known to quench indole fluorescence and amides of the polypeptide chain make interact with excited state Trp in the relatively unstructured, glucose-free enzyme. Also, removal of water around the aromatic ring by addition of glucose substrate or osmolyte may reduce the quenching.


Assuntos
Fluorescência , Glucoquinase/química , Conformação Proteica , Triptofano/química , Glucoquinase/genética , Glucoquinase/metabolismo , Humanos , Mutação , Espectrometria de Fluorescência , Especificidade por Substrato , Triptofano/metabolismo
11.
Phys Chem Chem Phys ; 19(44): 29934-29939, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29090298

RESUMO

Styryl dyes, specifically LDS group dyes, are known solvatochromic and electrochromic probes for monitoring mitochondrial potential in cellular environments. However, the ability of these dyes to respond to fluctuations in viscosity, pH and temperature has not been established. In this study, we demonstrated that LDS 798 (also known as Styryl-11) can sense environmental viscosity (via fluorescence lifetime changes) as well as pH changes (ratiometric intensity change) in the absence of polarity variations. Polarity changes can be probed by spectral changes using LDS 798. Therefore, all properties of the media should be considered, when these types of dyes are used as electrochromic/solvatochromic sensors in cellular environments.

12.
Anal Bioanal Chem ; 408(14): 3811-21, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26993308

RESUMO

In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes/química , Meios de Cultura
13.
Phys Chem Chem Phys ; 18(6): 4535-40, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26795882

RESUMO

Photophysical behaviour of a novel trimeric BODIPY rotor with a high extinction coefficient is reported. Steady state and time resolved fluorescence measurements established that the trimer could be used as a viscometer for molecular solvents, membrane-like environments and several cancer cell lines.


Assuntos
Compostos de Boro/química , Polímeros/química , Triazinas/química , Viscosidade
14.
Methods ; 66(2): 312-24, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24055436

RESUMO

Mucus secretion is the first-line of defence against the barrage of irritants inhaled into human lungs, but abnormally thick and viscous mucus results in many respiratory diseases. Understanding the processes underlying mucus pathology is hampered, in part, by lack of appropriate experimental tools for labeling and studying mucin granule secretion from live cells with high sensitivity and temporal resolution. In this report we present original spectroscopic properties of acridine orange (AO) which could be utilized to study granule release and mucin swelling with various advanced fluorescence imaging approaches. Low concentration (<200 µM) AO solutions presented absorption maximum at 494 nm, emission maximum at 525 nm and only ∼1.76 ns fluorescence lifetime. By contrast at high concentrations (4-30 mM) favoring formation of AO aggregates, a very different absorption with maximum at ∼440 nm, dramatically red-shifted emission with maximum at 630 nm, and over 10-fold increased fluorescence lifetime (∼20 ns) was observed. To verify potential utility of AO for real-time imaging we have performed confocal, total internal reflection fluorescence (TIRF) and fluorescence lifetime imaging (FLIM) of AO-stained Calu-3 cells. We found similar red-shifted fluorescence spectra and long fluorescence lifetime in intracellular granules as compared to that in the cytoplasm consistent with granular AO accumulation. Mechanical stimulation of Calu-3 cells resulted in multiple exocytotic secretory events of AO-stained granules followed by post-exocytotic swelling of their fluorescently-labeled content that was seen in single-line TIRF images as rapidly-expanding bright-fluorescence patches. The rate of their size expansion followed first-order kinetics with diffusivity of 3.98±0.07×10(-7)c m(2)/s, as expected for mucus gel swelling. This was followed by fluorescence decrease due to diffusional loss of AO that was ∼10-fold slower in the secreted mucus compared to bulk aqueous solution. In summary, we showed that AO-staining could be utilized for real-time TIRF imaging of mucin granule exocytosis and mucin swelling with high sensitivity and temporal resolution. Considering unique AO fluorescence properties that permit selective excitation of AO monomers versus aggregates, our study lays the groundwork for future development of two-color excitation scheme and two-color fluorescence FLIM live-cell imaging assay with potentially many biological applications.


Assuntos
Laranja de Acridina/química , Exocitose , Corantes Fluorescentes/química , Mucinas/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Cinética , Microscopia de Fluorescência , Mucinas/química , Imagem Óptica , Sus scrofa
15.
Methods ; 66(2): 292-8, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23994243

RESUMO

Applications of fluorescence based imaging techniques for detection in cellular and tissue environments are severely limited by autofluorescence of endogenous components of cells, tissue, and the fixatives used in sample processing. To achieve sufficient signal-to-background ratio, a high concentration of the probe needs to be used which is not always feasible. Since typically autofluorescence is in the nanosecond range, long-lived fluorescence probes in combination with time-gated detection can be used for suppression of unwanted autofluorescence. Unfortunately, this requires the sacrifice of the large portion the probe signal in order to sufficiently filter the background. We report a simple and practical approach to achieve a many-fold increase in the intensity of a long-lived probe without increasing the background fluorescence. Using controllable, well separated bursts of closely spaced laser excitation pulses, we are able to highly increase the fluorescence signal of a long-lived marker over the endogenous fluorescent background and scattering, thereby greatly increasing detection sensitivity. Using a commercially available confocal microscopy system equipped with a laser diode and time correlated single photon counting (TCSPC) detection, we are able to enhance the signal of a long-lived Ruthenium (Ru)-based probe by nearly an order of magnitude. We used 80 MHz bursts of pulses (12.5 ns pulse separation) repeated with a 320 kHz repetition rate as needed to adequately image a dye with a 380 ns lifetime. Just using 10 pulses in the burst increases the Ru signal almost 10-fold without any increase in the background signal.


Assuntos
Imagem Óptica/métodos , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Ratos , Células Ganglionares da Retina/metabolismo , Razão Sinal-Ruído , Tubulina (Proteína)/metabolismo
16.
J Lumin ; 168: 62-68, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26594061

RESUMO

In this paper, we have synthesized BSA protected gold nanoclusters (BSA Au nanocluster) and studied the effect of quencher, protein denaturant, pH and temperature on the fluorescence properties of the tryptophan molecule of the BSA Au nanocluster and native BSA. We have also studied their effect on the peak emission of BSA Au nanoclusters (650 nm). The phtophysical characterization of a newly developed fluorophore in different environments is absolutely necessary to futher develop their biomedical and analytical applications. It was observed from our experiments that the tryptophan in BSA Au nanoclusters is better shielded from the polar environment. Tryptophan in native BSA showed a red shift in its peak emission wavelength position. Tryptophan is a highly polarity sensitive dye and a minimal change in its microenvironment can be easily observed in its photophysical properties.

17.
Dyes Pigm ; 117: 16-23, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26594075

RESUMO

A cationic azadioxatriangulenium (ADOTA) dye was entrapped in silica thin films obtained by the sol-gel process and in poly (vinyl) alcohol (PVA) thin films. Azadioxatriangulenium is a red emitting fluorophore with a long fluorescence lifetime of ~20 ns. The fluorescent properties of azadioxatriangulenium in silica thin films and PVA films were studied by means of steady-state and time resolved fluorescence techniques. We have found that the azadioxatriangulenium entrapped in silica thin film has a wider fluorescence lifetime distribution (Lorentzian distribution), lower fluorescence efficiencies, shorter lifetimes compared to Azadioxatriangulenium in a PVA film. The local environment of azadioxatriangulenium molecules in the silica thin film is rich with water and ethanol, which creates the possibility of forming excited state aggregates due to high concentration of dye within a small confined area. In contrast to the PVA matrices, the porous silica films allow restricted rotations of Azadioxatriangulenium molecules, which result in faster and complex fluorescence anisotropy decays suggesting energy migration among dye molecules.

18.
J Biol Chem ; 288(10): 7012-23, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23319584

RESUMO

Calcium binding to thin filaments is a major element controlling active force generation in striated muscles. Recent evidence suggests that processes other than Ca(2+) binding, such as phosphorylation of myosin regulatory light chain (RLC) also controls contraction of vertebrate striated muscle (Cooke, R. (2011) Biophys. Rev. 3, 33-45). Electron paramagnetic resonance (EPR) studies using nucleotide analog spin label probes showed that dephosphorylated myosin heads are highly ordered in the relaxed fibers and have very low ATPase activity. This ordered structure of myosin cross-bridges disappears with the phosphorylation of RLC (Stewart, M. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 430-435). The slower ATPase activity in the dephosporylated moiety has been defined as a new super-relaxed state (SRX). It can be observed in both skeletal and cardiac muscle fibers (Hooijman, P., Stewart, M. A., and Cooke, R. (2011) Biophys. J. 100, 1969-1976). Given the importance of the finding that suggests a novel pathway of regulation of skeletal muscle, we aim to examine the effects of phosphorylation on cross-bridge orientation and rotational motion. We find that: (i) relaxed cross-bridges, but not active ones, are statistically better ordered in muscle where the RLC is dephosporylated compared with phosphorylated RLC; (ii) relaxed phosphorylated and dephosphorylated cross-bridges rotate equally slowly; and (iii) active phosphorylated cross-bridges rotate considerably faster than dephosphorylated ones during isometric contraction but the duty cycle remained the same, suggesting that both phosphorylated and dephosphorylated muscles develop the same isometric tension at full Ca(2+) saturation. A simple theory was developed to account for this fact.


Assuntos
Actinas/química , Músculo Esquelético/química , Cadeias Leves de Miosina/química , Sarcômeros/química , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Anisotropia , Cálcio/química , Cálcio/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Polarização de Fluorescência/métodos , Hidrólise , Contração Isométrica/efeitos dos fármacos , Modelos Biológicos , Modelos Moleculares , Movimento (Física) , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miofibrilas/química , Miofibrilas/metabolismo , Miofibrilas/fisiologia , Cadeias Leves de Miosina/metabolismo , Fosforilação , Coelhos , Rotação , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Marcadores de Spin
19.
Am J Physiol Regul Integr Comp Physiol ; 306(4): R222-33, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24285364

RESUMO

Force production in muscle results from ATP-driven cyclic interactions of myosin with actin. A myosin cross bridge consists of a globular head domain, containing actin and ATP-binding sites, and a neck domain with the associated light chain 1 (LC1) and the regulatory light chain (RLC). The actin polymer serves as a "rail" over which myosin translates. Phosphorylation of the RLC is thought to play a significant role in the regulation of muscle relaxation by increasing the degree of skeletal cross-bridge disorder and increasing muscle ATPase activity. The effect of phosphorylation on skeletal cross-bridge kinetics and the distribution of orientations during steady-state contraction of rabbit muscle is investigated here. Because the kinetics and orientation of an assembly of cross bridges (XBs) can only be studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs was minimized to ∼20 by limiting the detection volume and concentration of fluorescent XBs. The autofluorescence and photobleaching from an ex vivo sample was reduced by choosing a dye that was excited in the red and observed in the far red. The interference from scattering was eliminated by gating the signal. These techniques decrease large uncertainties associated with determination of the effect of phosphorylation on a few molecules ex vivo with millisecond time resolution. In spite of the remaining uncertainties, we conclude that the state of phosphorylation of RLC had no effect on the rate of dissociation of cross bridges from thin filaments, on the rate of myosin head binding to thin filaments, and on the rate of power stroke. On the other hand, phosphorylation slightly increased the degree of disorder of active cross bridges.


Assuntos
Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Cadeias Leves de Miosina/metabolismo , Miosinas/metabolismo , Animais , Cinética , Contração Muscular/fisiologia , Fosforilação , Coelhos
20.
Phys Chem Chem Phys ; 16(48): 27037-42, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25381865

RESUMO

Fluorescence properties of a novel homodimeric BODIPY dye rotor for Fluorescence Lifetime Imaging Microscopy (FLIM) are reported. Steady state and time resolved fluorescence measurements established the viscosity dependent behaviour in vitro. Homodimeric BODIPY embedded in different membrane mimicking lipid vesicles (DPPC, POPC and POPC plus cholesterol) is demonstrated to be a viable sensor for fluorescence lifetime based viscosity measurements. Moreover, SKOV3 cells readily endocytosed the dye, which accumulated in membranous structures inside the cytoplasm thereby allowing viscosity mapping of internal cell components.


Assuntos
Compostos de Boro/química , Membrana Celular/química , Citoplasma/química , Corantes Fluorescentes/química , Linhagem Celular , Dimerização , Humanos , Microscopia de Fluorescência , Imagem Óptica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa