Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Water Sci Technol ; 87(5): 1250-1258, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36919746

RESUMO

Biological selenium reduction processes are commonly employed as the best available technology (BAT) for selenium removal; however, as a by-product they produce trace amounts of organoselenium compounds with orders of magnitude greater bioaccumulation potential and toxicity. Here, we assessed buoyant photocatalysts (BPCs) as a potential passive advanced oxidation process (P-AOP) for organoselenium treatment. Using a synthetic mine-impacted water solution, spiked with selenomethionine (96 µg/L) as a representative organoselenium compound, photocatalysis with BPCs fully eliminated selenomethionine to <0.01 µg/L with conversion to selenite and selenate. A theoretical reaction pathway was inferred, and a kinetics model developed to describe the treatment trends and intermediates. Given the known toxic responses of Lepomis macrochirus and Daphnia magna to organoselenium, it was estimated that photocatalysis could effectively eliminate organoselenium acute toxicity within a UV dose of 8 kJ/L (1-2 days solar equivalent exposure), by transformation of selenomethionine to less hazardous oxidized Se species. Solar photocatalysis may therefore be a promising passive treatment technology for selenium-impacted mine water management.


Assuntos
Compostos Organosselênicos , Compostos de Selênio , Selênio , Selenometionina/metabolismo , Compostos de Selênio/metabolismo , Ácido Selênico , Ácido Selenioso
2.
J Am Chem Soc ; 144(42): 19417-19429, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36226909

RESUMO

Crystals are known to grow nonclassically or via four classical modes (the layer-by-layer, dislocation-driven, dendritic, and normal modes, which generally involve minimal interfacet surface diffusion). The field of nanoscience considers this framework to interpret how nanocrystals grow; yet, the growth of many anisotropic nanocrystals remains enigmatic, suggesting that the framework may be incomplete. Here, we study the solution-phase growth of pentatwinned Au nanorods without Br, Ag, or surfactants. Lower supersaturation conditions favored anisotropic growth, which appeared at variance with the known modes. Temporal electron microscopy revealed kinetically limited adatom funneling, as adatoms diffused asymmetrically along the vicinal facets (situated inbetween the {100} side-facets and {111} end-facets) of our nanorods. These vicinal facets were perpetuated throughout the synthesis and, especially at lower supersaturation, facilitated {100}-to-vicinal-to-{111} adatom diffusion. We derived a growth model from classical theory in view of our findings, which showed that our experimental growth kinetics were consistent with nanorods growing via two modes simultaneously: radial growth occurred via the layer-by-layer mode on {100} side-facets, whereas the asymmetric interfacet diffusion of adatoms to {111} end-facets mediated longitudinal growth. Thus, shape anisotropy was not driven by modulating the relative rates of monomer deposition on different facets, as conventionally thought, but rather by modulating the relative rates of monomer integration via interfacet diffusion. This work shows how controlling supersaturation, a thermodynamic parameter, can uncover distinct kinetic phenomena on nanocrystals, such as asymmetric interfacet surface diffusion and a fundamental growth mode for which monomer deposition and integration occur on different facets.


Assuntos
Nanopartículas Metálicas , Nanotubos , Nanopartículas Metálicas/química , Nanotubos/química , Anisotropia , Cinética , Tensoativos
3.
Biomacromolecules ; 23(1): 67-76, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34647719

RESUMO

Herein, we describe a new technique, direct saturation compensated transfer (DISCO) NMR, to characterize protein-macromolecule interactions. DISCO enables the direct observation of intermolecular interactions and is used to investigate mucoadhesion, a type of polymer-protein interaction that is widely implemented in drug delivery but remains poorly understood. In a model system of bovine submaxillary mucin and poly(acrylic acid), DISCO identifies selective backbone interactions that facilitate mucoadhesion through chain interpenetration. DISCO demonstrated distinct patterns of molecular selectivity between mucoadhesive polymers when applied to hydroxypropyl cellulose and carboxymethyl cellulose and that functionalizing adhesive polymers with strongly interacting moieties may be detrimental to the overall adhesive interaction. Additionally, DISCO was used to estimate polymer-protein dissociation constants using individual proton signals as reporters. Overall, DISCO can be used as a label-free screening tool to generate polymer-specific binding fingerprints to map and quantify interactions between macromolecules.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Adesivos , Animais , Bovinos , Fenômenos Químicos , Espectroscopia de Ressonância Magnética , Polímeros/química
4.
CMAJ ; 192(41): E1189-E1197, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32732229

RESUMO

BACKGROUND: Unprecedented demand for N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic has led to a global shortage of these masks. We validated a rapidly applicable, low-cost decontamination protocol in compliance with regulatory standards to enable the safe reuse of N95 respirators. METHODS: We inoculated 4 common models of N95 respirators with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and evaluated viral inactivation after disinfection for 60 minutes at 70°C and 0% relative humidity. Similarly, we evaluated thermal disinfection at 0% to 70% relative humidity for masks inoculated with Escherichia coli. We assessed masks subjected to multiple cycles of thermal disinfection for structural integrity using scanning electron microscopy and for protective functions using standards of the United States National Institute for Occupational Safety and Health for particle filtration efficiency, breathing resistance and respirator fit. RESULTS: A single heat treatment rendered SARS-CoV-2 undetectable in all mask samples. Compared with untreated inoculated control masks, E. coli cultures at 24 hours were virtually undetectable from masks treated at 70°C and 50% relative humidity (optical density at 600 nm wavelength, 0.02 ± 0.02 v. 2.77 ± 0.09, p < 0.001), but contamination persisted for masks treated at lower relative humidity. After 10 disinfection cycles, masks maintained fibre diameters similar to untreated masks and continued to meet standards for fit, filtration efficiency and breathing resistance. INTERPRETATION: Thermal disinfection successfully decontaminated N95 respirators without impairing structural integrity or function. This process could be used in hospitals and long-term care facilities with commonly available equipment to mitigate the depletion of N95 masks.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Transmissão de Doença Infecciosa/prevenção & controle , Desinfecção/métodos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Dispositivos de Proteção Respiratória/normas , COVID-19 , Temperatura Alta , Humanos , SARS-CoV-2
5.
Langmuir ; 35(5): 1756-1767, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30056710

RESUMO

Surface fouling remains an exigent issue for many biological implants. Unwanted solutes adsorb to reduce device efficiency and hasten degradation while increasing the risks of microbial colonization and adverse inflammatory response. To address unwanted fouling in modern implants in vivo, surface modification with antifouling polymers has become indispensable. Recently, zwitterionic self-assembled monolayers, which contain two or more charged functional groups but are electrostatically neutral and form highly hydrated surfaces, have been the focus of many antifouling coatings. Reports using various compositions of zwitterionic polymer brushes have demonstrated ultralow fouling in the ng/cm2 range. These coatings, however, are thick and can hinder the target application of biological devices. Here, we report an ultrathin (8.52 Å) antifouling self-assembled monolayer composed of cysteine that is amenable to facile fabrication. The antifouling characteristics of the zwitterionic surfaces were evaluated against bovine serum albumin, fibrinogen, and human blood in real time using quartz crystal microbalance and surface plasmon resonance imaging. Compared to untreated gold surfaces, the ultrathin cysteine coating reduced the adsorption of bovine serum albumin by 95% (43 ng/cm2 adsorbed) after 3 h and 90% reduction after 24 h. Similarly, the cysteine self-assembled monolayer reduced the adsorption of fibrinogen as well as human blood by >90%. The surfaces were further characterized using scanning electron microscopy: protein-enhanced adsorption and cellular adsorption in human blood was found on untreated surfaces but not on the cysteine SAM-protected surfaces. These findings suggest that surfaces can be functionalized with an ultrathin layer of cysteine to resist the adsorption of key proteins, with performance comparable to zwitterionic polymer brushes. As such, cysteine surface coatings are a promising methodology to improve the long-term utility of biological devices.


Assuntos
Incrustação Biológica/prevenção & controle , Cisteína/química , Membranas Artificiais , Adsorção/efeitos dos fármacos , Animais , Sangue , Bovinos , Fibrinogênio/química , Humanos , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
6.
Anesthesiology ; 130(5): 778-790, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870158

RESUMO

BACKGROUND: Human umbilical cord mesenchymal stromal cells possess considerable therapeutic promise for acute respiratory distress syndrome. Umbilical cord mesenchymal stromal cells may exert therapeutic effects via extracellular vesicles, while priming umbilical cord mesenchymal stromal cells may further enhance their effect. The authors investigated whether interferon-γ-primed umbilical cord mesenchymal stromal cells would generate mesenchymal stromal cell-derived extracellular vesicles with enhanced effects in Escherichia coli (E. coli) pneumonia. METHODS: In a university laboratory, anesthetized adult male Sprague-Dawley rats (n = 8 to 18 per group) underwent intrapulmonary E. coli instillation (5 × 10 colony forming units per kilogram), and were randomized to receive (a) primed mesenchymal stromal cell-derived extracellular vesicles, (b) naïve mesenchymal stromal cell-derived extracellular vesicles (both 100 million mesenchymal stromal cell-derived extracellular vesicles per kilogram), or (c) vehicle. Injury severity and bacterial load were assessed at 48 h. In vitro studies assessed the potential for primed and naïve mesenchymal stromal cell-derived extracellular vesicles to enhance macrophage bacterial phagocytosis and killing. RESULTS: Survival increased with primed (10 of 11 [91%]) and naïve (8 of 8 [100%]) mesenchymal stromal cell-derived extracellular vesicles compared with vehicle (12 of 18 [66.7%], P = 0.038). Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles reduced alveolar-arterial oxygen gradient (422 ± 104, 536 ± 58, 523 ± 68 mm Hg, respectively; P = 0.008), reduced alveolar protein leak (0.7 ± 0.3, 1.4 ± 0.4, 1.5 ± 0.7 mg/ml, respectively; P = 0.003), increased lung mononuclear phagocytes (23.2 ± 6.3, 21.7 ± 5, 16.7 ± 5 respectively; P = 0.025), and reduced alveolar tumor necrosis factor alpha concentrations (29 ± 14.5, 35 ± 12.3, 47.2 ± 6.3 pg/ml, respectively; P = 0.026) compared with vehicle. Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles enhanced endothelial nitric oxide synthase production in the injured lung (endothelial nitric oxide synthase/ß-actin = 0.77 ± 0.34, 0.25 ± 0.29, 0.21 ± 0.33, respectively; P = 0.005). Both primed and naïve mesenchymal stromal cell-derived extracellular vesicles enhanced E. coli phagocytosis and bacterial killing in human acute monocytic leukemia cell line (THP-1) in vitro (36.9 ± 4, 13.3 ± 8, 0.1 ± 0.01%, respectively; P = 0.0004) compared with vehicle. CONCLUSIONS: Extracellular vesicles from interferon-γ-primed human umbilical cord mesenchymal stromal cells more effectively attenuated E. coli-induced lung injury compared with extracellular vesicles from naïve mesenchymal stromal cells, potentially via enhanced macrophage phagocytosis and killing of E. coli.


Assuntos
Lesão Pulmonar Aguda/terapia , Infecções por Escherichia coli/complicações , Vesículas Extracelulares/fisiologia , Interferon gama/farmacologia , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Humanos , Macrófagos/imunologia , Masculino , Fagocitose , Ratos , Ratos Sprague-Dawley
7.
Environ Sci Technol ; 52(24): 14256-14265, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30485742

RESUMO

The development of nanoparticle-based soil remediation techniques is hindered by the lack of accurate in situ nanoparticle (NP) monitoring and characterization methods. Spectral induced polarization (SIP), a noninvasive geophysical technique, offers a promising approach to detect and quantify NPs in porous media. However, its successful implementation as a monitoring tool requires an understanding of the polarization mechanisms, the governing NP-associated SIP responses and their dependence on the stabilizing coatings that are typically used for NPs deployed in environmental applications. Herein, we present SIP responses (0.1-10 000 Hz) measured during injection of a poloxamer-coated superparamagnetic iron-oxide nanoparticle (SPION) suspension in flow-through columns packed with natural sand from the Borden aquifer. An advective-dispersive transport model is fitted to outflow SPION concentration measurements to compute average concentrations over the SIP spatial response domain (within the columns). The average SPION concentrations are compared with the real and imaginary components of the complex conductivity. Excellent correspondence is found between the average SPION concentrations in the columns and the imaginary conductivity values, suggesting that NP-mediated polarization (that is, charge storage) increases proportionally with increasing SPION concentration. Our results support the possibility of SIP monitoring of spatial and temporal NP distributions, which can be immediately deployed in bench-scale studies with the prospect of future real-world field applications.


Assuntos
Água Subterrânea , Nanopartículas , Ferro , Porosidade , Dióxido de Silício
8.
Small ; 12(3): 360-70, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26618618

RESUMO

Efficient drug loading and selectivity in drug delivery are two key features of a good drug-carrier design. Here we report on such a drug carrier formed by using hollow mesoporous silica nanoparticles (HMS NPs) as the core and specifically designed multifunctional amphiphilic agents as the encapsulating shell. These nanocarriers combine the advantages of the HMS NP core (favorable physical and structural properties) and the versatility of an organic-based shell (e.g., specificity in chemical properties and modifiability). Moreover, both the properties of the core and the shell can be independently varied. The varied core and shell could then be integrated into a single device (drug carrier) to provide efficient and specific drug delivery. In vitro and in vivo data suggests that these drug nanocarriers are biocompatible and are able to deliver hydrophobic drugs selectively to target tumor cells. After the break of the pH-labile linkages in the shell, the drug payload can be released and the tumor cells are killed.


Assuntos
Diagnóstico por Imagem/métodos , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Dióxido de Silício/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Fluorescência , Células HeLa , Humanos , Injeções Intravenosas , Células KB , Camundongos Nus , Nanopartículas/ultraestrutura , Especificidade de Órgãos/efeitos dos fármacos , Porosidade , Carga Tumoral/efeitos dos fármacos
9.
Mol Pharm ; 13(9): 2897-905, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27482595

RESUMO

Eye diseases, such as dry eye syndrome, are commonly treated with eye drop formulations. However, eye drop formulations require frequent dosing with high drug concentrations due to poor ocular surface retention, which leads to poor patient compliance and high risks of side effects. We developed a mucoadhesive nanoparticle eye drop delivery platform to prolong the ocular retention of topical drugs, thus enabling treatment of eye diseases using reduced dosage. Using fluorescent imaging on rabbit eyes, we showed ocular retention of the fluorescent dye delivered through these nanoparticles beyond 24 h while free dyes were mostly cleared from the ocular surface within 3 h after administration. Utilizing the prolonged retention of the nanoparticles, we demonstrated effective treatment of experimentally induced dry eye in mice by delivering cyclosporin A (CsA) bound to this delivery system. The once a week dosing of 0.005 to 0.01% CsA in NP eye drop formulation demonstrated both the elimination of the inflammation signs and the recovery of ocular surface goblet cells after a month. Thrice daily administration of RESTASIS on mice only showed elimination without recovering the ocular surface goblet cells. The mucoadhesive nanoparticle eye drop platform demonstrated prolonged ocular surface retention and effective treatment of dry eye conditions with up to 50- to 100-fold reduction in overall dosage of CsA compared to RESTASIS, which may significantly reduce side effects and, by extending the interdosing interval, improve patient compliance.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Oftalmopatias/tratamento farmacológico , Nanopartículas/química , Animais , Ácidos Borônicos/química , Ciclosporina/química , Ciclosporina/uso terapêutico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido N-Acetilneuramínico/química , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/uso terapêutico , Coelhos
10.
Langmuir ; 32(30): 7621-9, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27399345

RESUMO

Protein analysis is a fundamental aspect of biochemical research. Gold nanoparticles are an emerging platform for various biological applications given their high surface area, biocompatibility, and unique optical properties. The colorimetric properties of gold nanoparticles make them ideal for point-of-care diagnostics. Different aspects of gold nanoparticle-protein interactions have been investigated to predict the effect of protein adsorption on colloidal stability, but the role of surfactants is often overlooked, despite their potential to alter both protein and nanoparticle properties. Herein we present a method by which gold nanoparticles can be prepared in various surfactants and used for array-based quantification and identification of proteins. The exchange of surfactant not only changed the zeta potential of those gold nanoparticles but also drastically altered their aggregation response to five different proteins (bovine serum albumin, human serum albumin, immunoglobulin G, lysozyme, and hemoglobin) in a concentration-dependent manner. Finally, we demonstrate that varying surfactant concentration can be used to control assay sensitivity.


Assuntos
Compostos de Cetrimônio/química , Ouro/química , Nanopartículas Metálicas/química , Polissorbatos/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Adsorção , Bioensaio/instrumentação , Bioensaio/métodos , Cetrimônio , Hemoglobinas/química , Imunoglobulina G/química , Cinética , Muramidase/química , Soroalbumina Bovina/química , Albumina Sérica Humana/química , Propriedades de Superfície
11.
Analyst ; 141(19): 5627-36, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27458615

RESUMO

A growing understanding of the fundamental role of proteins in diseases has advanced the development of quantitative protein assays in the medical field. Current techniques for protein analysis include enzyme-linked immunosorbent assays (ELISA), flow cytometry, mass spectrometry, and immunohistochemistry. However, many of these conventional strategies require specialized training, expensive antibodies, or sophisticated equipment, raising assay costs and limiting their application to laboratory analysis. Here, we present the application of a "chemical nose" type colorimetric gold nanoparticle sensor for detection, quantification, and identification of single proteins, protein mixtures, and proteins within the complex environment of human serum. The unique interactions between a mixture of two different gold nanoparticle morphologies (spherical and branched) and six separate proteins (bovine serum albumin, human serum albumin, immunoglobulin G, fibrinogen, lysozyme, and hemoglobin) generated distinguishable protein- and concentration-dependent absorption spectra, even at nanomolar concentrations. Furthermore, we show that this response is sensitive to the relative abundance of different proteins in solution, permitting analysis of protein mixtures. Finally, we demonstrate the ability to distinguish human serum samples with and without a clinically relevant two-fold increase in immunoglobulin G, without the use of expensive reagents or complicated sample processing.


Assuntos
Técnicas Biossensoriais , Misturas Complexas/análise , Proteínas/análise , Soro/química , Colorimetria , Ouro , Humanos , Nanopartículas Metálicas
12.
Infect Immun ; 83(3): 1114-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561707

RESUMO

The viscoelastic mucus layer of gastrointestinal tracts is a host defense barrier that a successful enteric pathogen, such as Vibrio cholerae, must circumvent. V. cholerae, the causative agent of cholera, is able to penetrate the mucosa and colonize the epithelial surface of the small intestine. In this study, we found that mucin, the major component of mucus, promoted V. cholerae movement on semisolid medium and in liquid medium. A genome-wide screen revealed that Vibrio polysaccharide (VPS) production was inversely correlated with mucin-enhanced motility. Mucin adhesion assays indicated that VPS bound to mucin. Moreover, we found that vps expression was reduced upon exposure to mucin. In an infant mouse colonization model, mutants that overexpressed VPS colonized less effectively than wild-type strains in more distal intestinal regions. These results suggest that V. cholerae is able to sense mucosal signals and modulate vps expression accordingly so as to promote fast motion in mucus, thus allowing for rapid spread throughout the intestines.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Mucinas/metabolismo , Polissacarídeos Bacterianos/biossíntese , Vibrio cholerae/metabolismo , Animais , Animais Recém-Nascidos , Cólera/microbiologia , Interações Hospedeiro-Patógeno , Mucosa Intestinal/química , Mucosa Intestinal/microbiologia , Intestino Delgado/química , Intestino Delgado/microbiologia , Camundongos , Movimento , Polissacarídeos Bacterianos/genética , Ligação Proteica , Transdução de Sinais , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento
13.
Opt Express ; 23(15): 20104-14, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367668

RESUMO

A calculation based on surface plasmon coupling condition and Maxwell-Garnett equation was performed for predicting the coupling angle shift and thin film thickness in scanning surface plasmon microscopy (SSPM). The refractive index sensitivity and lateral resolution of an SSPM system was also investigated. The limit of detection of angle shift was 0.01°, the limit of quantification of angle shift was 0.03°, and the sensitivity was around 0.12° shift per nm ZnO film when the film thickness was less than 22.6 nm. Two partially connected Au nano-discs with a center-to-center distance of 1.1 µm could be identified as two peaks. The system was applied to image nanostructure defects and a virus-probe functionalized nanoarray. We expect the potential application in nanobiosensors with further optimization in the future.

14.
Chemistry ; 21(41): 14555-61, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26285049

RESUMO

Despite the numerous studies on the self-assembled monolayers (SAMs) of alkylthiols on gold, the mechanisms involved, especially the nature and influence of the thiol-gold interface are still under debate. In this work the adsorption of aminothiols on Au(111) surfaces has been studied by using surface IR and X-ray photoelectron spectroscopy (XPS) as well as by density functional theory (DFT) modeling. Two aminothiols were used, cysteamine (CEA) and mercaptoundecylamine (MUAM), which contain two and eleven carbon atoms, respectively. By combining experimental and theoretical methods, it was possible to draw a molecular picture of the thiol-gold interface. The long-chain aminothiol produced better ordered SAMs, but, interestingly, the XPS data showed different sulfur binding environments depending on the alkyl chain length; an additional peak at low binding energy was observed upon CEA adsorption, which indicates the presence of sulfur in a different environment. DFT modeling showed that the positions of the sulfur atoms in the SAMs on gold with similar unit cells [(2√3×2√3)R30°] depended on the length of the alkyl chain. Short-chain alkylthiol SAMs were adsorbed more strongly than long-chain thiol SAMs and were shown to induce surface reconstruction by extracting atoms from the surface, possibly forming adatom/vacancy combinations that lead to the additional XPS peak. In the case of short alkylthiols, the thiol-gold interface governs the layer, CEA adsorbs strongly, and the mechanism is closer to single-molecule adsorption than self-assembly, whereas for long chains, interactions between alkyl chains drive the system to self-assembly, leading to a higher level of SAM organization and restricting the influence of the sulfur-gold interface.

15.
CMAJ ; 192(49): E1747-E1756, 2020 Dec 07.
Artigo em Francês | MEDLINE | ID: mdl-33288514

RESUMO

CONTEXTE: La demande sans précédent de respirateurs N95 durant la pandémie de maladie à coronavirus 2019 (COVID-19) a entraîné une pénurie mondiale. Nous avons validé un protocole de décontamination rapide et économique répondant aux normes réglementaires afin de permettre la réutilisation sûre de ce type de masque. MÉTHODES: Nous avons contaminé 4 modèles courants de respirateurs N95 avec le coronavirus du syndrome respiratoire aigu sévère 2 (SRAS-CoV-2) et avons évalué l'inactivation virale après une désinfection de 60 minutes à 70 °C et à une humidité relative de 0 %. De même, nous avons étudié l'efficacité de la désinfection thermique, à une humidité relative allant de 0 % à 70 %, de masques contaminés à Escherichia coli. Enfin, nous avons examiné des masques soumis à de multiples cycles de désinfection thermique: nous avons évalué leur intégrité structurelle à l'aide d'un microscope à balayage, et leurs propriétés protectrices au moyen des normes du National Institute for Occupational Safety and Health des États-Unis relatives à la filtration particulaire, à la résistance respiratoire et à l'ajustement. RÉSULTATS: Une seule désinfection thermique a suffi pour que le SRAS-CoV-2 ne soit plus décelable sur les masques étudiés. En ce qui concerne les masques contaminés à E. coli, une culture de 24 heures a révélé que la bactérie n'était pratiquement plus décelable sur les masques désinfectés à 70 °C et à une humidité relative de 50 %, contrairement aux masques non désinfectés (densité optique à une longueur d'onde de 600 nm : 0,02 ± 0,02 contre 2,77 ± 0,09; p < 0,001), mais qu'elle persistait sur les masques traités à une humidité relative moindre. Les masques ayant subi 10 cycles de désinfection avaient toujours des fibres de diamètre semblable à celui des fibres des masques non traités, et ils répondaient encore aux normes d'ajustement, de filtration et de résistance respiratoire. INTERPRÉTATION: La désinfection thermique a réussi à décontaminer les respirateurs N95 sans compromettre leur intégrité structurelle ni modifier leurs propriétés. Elle pourrait se faire dans les hôpitaux et les établissements de soins de longue durée avec de l'équipement facilement accessible, ce qui réduirait la pénurie de N95.

16.
J Nanosci Nanotechnol ; 15(4): 2628-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26353474

RESUMO

Biosensors for point-of-care testing of critical illnesses are urgently needed, especially in many areas of poor healthcare infrastructure. Polydiacetylene-based sensors are ideal because of their unique colorimetric properties where blue to red color shifts can be observed with the naked eye. In this work, a colorimetric biosensor capable of simple, rapid magnetic separation is optimized, using horse IgG as a model antibody, to obtain higher sensitivity. Composed of a unique combination of polydiacetylene and superparamagnetic iron oxide, the biosensor is fabricated at varying ratios of polydiacetylene to demonstrate optimization of color responsiveness. At increasing polydiacetylene ratios, improved color responsiveness and aqueous dispersion are observed, but the magnetic separation efficiency starts to suffer. The optimal color response is obtained at 90 wt% polydiacetylene. In addition, a 50 times improved lower detection limit of 0.01 mg/mL horse IgG is achieved, a relevant biomarker concentration for diagnosing sepsis. This platform provides a promising colorimetric biosensor for point-of-care use.


Assuntos
Biomarcadores/análise , Colorimetria/instrumentação , Colorimetria/métodos , Nanopartículas de Magnetita/química , Polímeros/química , Poli-Inos/química , Animais , Cavalos , Imunoglobulina G/análise , Limite de Detecção , Modelos Químicos , Sistemas Automatizados de Assistência Junto ao Leito , Polímero Poliacetilênico
17.
Nano Lett ; 14(2): 1026-31, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24456092

RESUMO

DNA is a nanowire in nature which chelates Ni ions and forms a conducting chain in its base-pairs (Ni-DNA). Each Ni ion in Ni-DNA exhibits low (Ni(2+)) or high (Ni(3+)) oxidation state and can be switched sequentially by applying bias voltage with different polarities and writing times. The ratio of low and high oxidation states of Ni ions in Ni-DNA represents a programmable multistate memory system with an added capacitive component, in which multistate information can be written, read, and erased. This study also indicates that the biomolecule-based self-organized nanostructure can be used as a template for nanodevice fabrication.


Assuntos
DNA/química , Eletrodos , Nanopartículas Metálicas/química , Nanofios/química , Níquel/química , DNA/ultraestrutura , Condutividade Elétrica , Impedância Elétrica , Íons , Nanopartículas Metálicas/ultraestrutura , Nanofios/ultraestrutura , Oxirredução , Oxigênio/química
18.
Langmuir ; 30(22): 6497-507, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24841849

RESUMO

Applications of implantable bioelectronics for analytical and curative purposes are currently limited by their poor long-term biofunctionality in physiological media and nonspecific interactions with biomolecules. In an attempt to prolong in vivo functionality, recent advances in surface modifications have demonstrated that zwitterionic coatings can rival the performance of conventional poly(ethylene glycol) polymers in reducing nonspecific protein fouling. Herein, we report the fabrication of a very thin layer of nonfouling zwitterionic cysteine surface capable of protecting implantable bioelectronics from nonspecific adsorption of plasma proteins. This work is the first of its kind to fabricate, through solution chemistry, a cysteine surface exhibiting zwitterionic state as high as 88% and to demonstrate antibiofouling under the exposure of bovine serum albumin (BSA) and human serum. The fabricated surface utilized a minimal amount of gold substrate, approximately 10 nm, and an extremely thin antifouling layer at 1.14 nm verified by ellipsometry. X-ray photoelectron spectroscopy assessment of the nitrogen (N1s) and carbon (C1s) spectra conclude that 87.8% of the fabricated cysteine surface is zwitterionic, 2.5% is positively charged, and 9.6% is noncharged. Antibiofouling performance of the cysteine surface is quantitatively determined by bicinchoninic acid (BCA) protein assay as well as qualitatively confirmed using scanning electron spectroscopy. Cysteine surfaces demonstrated a BSA fouling of 3.9 ± 4.84% µg/cm(2), which is 93.6% and 98.5% lower than stainless steel and gold surfaces, respectively. Surface plasmon resonance imaging analysis returned similar results and suggest that a thinner cysteine coating will enhance performance. Scanning electron microscopy confirmed the results of BCA assay and suggested that the cysteine surface demonstrated a 69% reduction to serum fouling. The results reported in this paper demonstrate that it is possible to achieve a highly zwitterionic surface through solution chemistry on a macroscopic level that is capable of improving biocompatibility of long-term implantable bioelectronics.


Assuntos
Incrustação Biológica/prevenção & controle , Cisteína/química , Animais , Bovinos , Humanos , Microscopia Eletroquímica de Varredura , Espectroscopia Fotoeletrônica , Polímeros/química , Soro/química , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
19.
Chemosphere ; 361: 142502, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838863

RESUMO

Bitumen extraction in Alberta's oil sands region uses large volumes of water, leading to an abundance of oil sands process-affected water (OSPW). OSPW contains naphthenic acid fraction compounds (NAFCs) which have been found to contribute to OSPW toxicity. This study utilized a multistep treatment, coupling biological degradation with UV photocatalytic oxidation, and nutrient addition to boost the native microbial community's degradation capacity. OSPW initially contained 40-42 mg/L NAFCs with a toxicity of 3.8-3.9 TU. Initial biodegradation (Step 1) was used to remove the easily biodegradable NAFCs (11-25% removal), followed by a light or heavy dose of oxidation (Step 2) to breakdown the recalcitrant NAFCs (66-82% removal). Lastly, post-oxidation biodegradation with nutrients (Step 3) removed the residual bioavailable NAFCs (16-31% removal). By the end of the multistep treatment, the final NAFC concentrations and toxicity ranged from 5.3 to 6.8 mg/L and 1.1-1.2 TU. Analysis showed that OPSW was limited in phosphorus (below detection limit), and the addition of nutrients improved the degradation of NAFCs. Two treatments throughout the multistep treatment never received nutrients and showed minimal NAFC degradation post-oxidation. The native microbial community survived the stress from UV photocatalytic oxidation as seen by the post-oxidation NAFC biodegradation. Microbial community diversity was reduced considerably following oxidation, but increased with nutrient addition. The microbial community consisted predominately of Proteobacteria (Gammaproteobacteria and Alphaproteobacteria), and the composition shifted depending on the level of oxidation received. Possible NAFC-degrading microbes identified after a light oxidation dose included Pseudomonas, Acinetobacter and Xanthomonadales, while Xanthobacteracea and Rhodococcus were the dominant microbes after heavy oxidation. This experiment confirms that the microbial community is capable of degrading NAFCs and withstanding oxidative stress, and that degradation is further enhanced with the addition of nutrients.


Assuntos
Biodegradação Ambiental , Ácidos Carboxílicos , Campos de Petróleo e Gás , Oxirredução , Titânio , Raios Ultravioleta , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Titânio/química , Ácidos Carboxílicos/metabolismo , Alberta , Catálise , Hidrocarbonetos/metabolismo
20.
ACS ES T Water ; 4(4): 1483-1497, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633367

RESUMO

Environmental reclamation of Canada's oil sands tailings ponds is among the single largest water treatment challenges globally. The toxicity of oil sands process-affected water (OSPW) has been associated with its dissolved organics, a complex mixture of naphthenic acid fraction components (NAFCs). Here, we evaluated solar treatment with buoyant photocatalysts (BPCs) as a passive advanced oxidation process (P-AOP) for OSPW remediation. Photocatalysis fully degraded naphthenic acids (NAs) and acid extractable organics (AEO) in 3 different OSPW samples. However, classical NAs and AEO, traditionally considered among the principal toxicants in OSPW, were not correlated with OSPW toxicity herein. Instead, nontarget petroleomic analysis revealed that low-polarity organosulfur compounds, composing <10% of the total AEO, apparently accounted for the majority of waters' toxicity to fish, as described by a model of tissue partitioning. These findings have implications for OSPW release, for which a less extensive but more selective treatment may be required than previously expected.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa