RESUMO
Recently protein binders have emerged as a promising substitute for antibodies due to their high specificity and low cost. Herein, we demonstrate an electrochemical biosensor chip through the electronic labelling strategy using lead sulfide (PbS) colloidal quantum dots (CQDs) and the unnatural SARS-CoV-2 spike miniprotein receptor LCB. The unnatural receptor can be utilized as a molecular probe for the construction of CQD-based electrochemical biosensor chips, through which the specific binding of LCB and the spike protein is transduced to sensor electrical signals. The biosensor exhibits a good linear response in the concentration range of 10 pg mL-1 to 1 µg mL-1 (13.94 fM to 1.394 nM) with the limit of detection (LOD) being 3.31 pg mL-1 (4.607 fM for the three-electrode system) and 9.58 fg mL-1 (0.013 fM for the HEMT device). Due to the high sensitivity of the electrochemical biosensor, it was also used to study the binding kinetics between the unnatural receptor LCB and spike protein, which has achieved comparable results as those obtained with commercial equipment. To the best of our knowledge, this is the first example of using a computationally designed miniprotein receptor based on electrochemical methods, and it is the first kinetic assay performed with an electrochemical assay alone. The miniprotein receptor electrochemical biosensor based on QDs is desirable for fabricating high-throughput, large-area, wafer-scale biochips.
Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Pontos Quânticos/química , Glicoproteína da Espícula de Coronavírus , Técnicas Eletroquímicas , Limite de DetecçãoRESUMO
Electrochemical sensors that incorporate immunoassay principles have the ability to monitor dynamic processes of antigen-antibody interactions in real time. In this study, a gold electrode was modified with tin dioxide colloidal quantum wire (SnO2 QWs) and then coated with the leucine/arginine subtype microcystin (MC-LR) antibody. The active site of SnO2 QWs that was not bound by MC-LR antibody was then passivated with bovine serum protein (BSA). When the MC-LR antigen binds specifically to the antibodies on the electrode's surface, it triggers electrochemical reactions and generates electrical signals at specific voltage conditions. The SnO2 QW exhibits excellent electron transport ability, and its ability to form a loose and porous microstructure on the gold electrode surface, which is conducive to the receptor function of the biosensor. The results show a high affinity between the MC-LR antigen and antibody, ranging from 1 pg/mL to 10 ng/mL of MC-LR antigen concentration. The kinetic characteristics of the immune reaction between MC-LR antigen and antibody were elucidated, obtaining a binding constant of 1.399 × 1011 M-1 and a dissociation constant of 7.147 pM, demonstrating the potential of electrochemical biosensing technology in biomolecular interactions.