Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 39(11): 4827-35, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21335607

RESUMO

MicroRNAs control gene expression by post-transcriptional down-regulation of their target mRNAs. Complementarity between the seed region (nucleotides 2-8) of a microRNA and the 3'-UTR of its target mRNA is the key determinant in recognition. However, the structural basis of the ability of the seed region to dominate target recognition in eukaryotic argonaute complexes has not been directly demonstrated. To better understand this problem, we performed chemical probing of microRNAs held in native argonaute-containing complexes isolated from Caenorhabditis elegans. Direct probing of the RNA backbone in isolated native microRNP complexes shows that the conformation of the seed region is uniquely constrained, while the rest of the microRNA structure is conformationally flexible. Probing the Watson-Crick edges of the bases shows that bases 2-4 are largely inaccessible to solvent, while seed region bases 5-8 are readily modified; collectively our probing results suggest a model in which these bases are primed for initiating base pairing with the target mRNA. In addition, an unusual DMS reactivity with U at position 6 is observed. We propose that interaction of miRNAs with argonaute proteins pre-organizes the structure of the seed sequence for specific recognition of target mRNAs.


Assuntos
MicroRNAs/química , Ribonucleoproteínas/química , Animais , Pareamento de Bases , Caenorhabditis elegans/genética , Carboidratos/química , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Fosfatos/química , RNA Mensageiro/química , Ribonucleoproteínas/metabolismo
2.
BMC Genomics ; 11: 465, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20691096

RESUMO

BACKGROUND: Tissue differentiation is accompanied by genome-wide changes in the underlying chromatin structure and dynamics, or epigenome. By controlling when, where, and what regulatory factors have access to the underlying genomic DNA, the epigenome influences the cell's transcriptome and ultimately its function. Existing genomic methods for analyzing cell-type-specific changes in chromatin generally involve two elements: (i) a source for purified cells (or nuclei) of distinct types, and (ii) a specific treatment that partitions or degrades chromatin by activity or structural features. For many cell types of great interest, such assays are limited by our inability to isolate the relevant cell populations in an organism or complex tissue containing an intertwined mixture of other cells. This limitation has confined available knowledge of chromatin dynamics to a narrow range of biological systems (cell types that can be sorted/separated/dissected in large numbers and tissue culture models) or to amalgamations of diverse cell types (tissue chunks, whole organisms). RESULTS: Transgene-driven expression of DNA/chromatin modifying enzymes provides one opportunity to query chromatin structures in expression-defined cell subsets. In this work we combine in vivo expression of a bacterial DNA adenine methyltransferase (DAM) with high throughput sequencing to sample tissue-specific chromatin accessibility on a genome-wide scale. We have applied the method (DALEC: Direct Asymmetric Ligation End Capture) towards mapping a cell-type-specific view of genome accessibility as a function of differentiated state. Taking advantage of C. elegans strains expressing the DAM enzyme in diverse tissues (body wall muscle, gut, and hypodermis), our efforts yield a genome-wide dataset measuring chromatin accessibility at each of 538,000 DAM target sites in the C. elegans (diploid) genome. CONCLUSIONS: Validating the DALEC mapping results, we observe a strong association between observed coverage by nucleosomes and low DAM accessibility. Strikingly, we observed no extended regions of inaccessible chromatin for any of the tissues examined. These results are consistent with "local choreography" models in which differential gene expression is driven by intricate local rearrangements of chromatin structure rather than gross impenetrability of large chromosomal regions.


Assuntos
Caenorhabditis elegans/genética , Cromatina/metabolismo , Análise de Sequência de DNA/métodos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Metilases de Modificação do DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma Helmíntico , Histonas/metabolismo
3.
Elife ; 92020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804637

RESUMO

Nuclear RNAi provides a highly tractable system to study RNA-mediated chromatin changes and epigenetic inheritance. Recent studies have indicated that the regulation and function of nuclear RNAi-mediated heterochromatin are highly complex. Our knowledge of histone modifications and the corresponding histonemodifying enzymes involved in the system remains limited. In this study, we show that the heterochromatin mark, H3K23me3, is induced by nuclear RNAi at both exogenous and endogenous targets in C. elegans. In addition, dsRNA-induced H3K23me3 can persist for multiple generations after the dsRNA exposure has stopped. We demonstrate that the histone methyltransferase SET-32, methylates H3K23 in vitro. Both set-32 and the germline nuclear RNAi Argonaute, hrde-1, are required for nuclear RNAi-induced H3K23me3 in vivo. Our data poise H3K23me3 as an additional chromatin modification in the nuclear RNAi pathway and provides the field with a new target for uncovering the role of heterochromatin in transgenerational epigenetic silencing.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Histona Metiltransferases/genética , Histonas/metabolismo , Interferência de RNA , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Histona Metiltransferases/metabolismo , RNA Nuclear/genética , RNA Nuclear/metabolismo
4.
Dev Cell ; 41(4): 408-423.e7, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28535375

RESUMO

Germline-expressed endogenous small interfering RNAs (endo-siRNAs) transmit multigenerational epigenetic information to ensure fertility in subsequent generations. In Caenorhabditis elegans, nuclear RNAi ensures robust inheritance of endo-siRNAs and deposition of repressive H3K9me3 marks at target loci. How target silencing is maintained in subsequent generations is poorly understood. We discovered that morc-1 is essential for transgenerational fertility and acts as an effector of endo-siRNAs. Unexpectedly, morc-1 is dispensable for siRNA inheritance but is required for target silencing and maintenance of siRNA-dependent chromatin organization. A forward genetic screen identified mutations in met-1, which encodes an H3K36 methyltransferase, as potent suppressors of morc-1(-) and nuclear RNAi mutant phenotypes. Further analysis of nuclear RNAi and morc-1(-) mutants revealed a progressive, met-1-dependent enrichment of H3K36me3, suggesting that robust fertility requires repression of MET-1 activity at nuclear RNAi targets. Without MORC-1 and nuclear RNAi, MET-1-mediated encroachment of euchromatin leads to detrimental decondensation of germline chromatin and germline mortality.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Células Germinativas/metabolismo , Padrões de Herança/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , Animais , Núcleo Celular/metabolismo , Genoma , Células Germinativas/citologia , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Modelos Biológicos , Mutação/genética , RNA Interferente Pequeno/metabolismo
5.
RNA ; 13(9): 1492-504, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17652138

RESUMO

MicroRNAs (miRNAs) are regulatory molecules that share both biosynthetic derivation (cleavage from short hairpin precursor RNAs) and functional roles (downregulation of specific mRNAs through targeted degradation and/or translational inhibition). A distinct family of small RNAs, termed siRNAs, have some common characteristics but exhibit distinct modes of biosynthesis and function. In this study, we report procedures for purification of a predominant species of miRNA-containing ribonucleoprotein complexes from Caenorhabditis elegans and demonstrate that this population is distinct from the predominant pool of siRNA-containing ribonucleoprotein complexes. An observed miRNP-associated RNA population consisting predominantly (>95%) of miRNAs supported the unique identity of miRNPs as biological effectors within the cell, provided clean material for analysis of changes in miRNA spectra during development, and provided strong evidence of miRNA character for a number of novel small RNAs. Likewise, the RNA spectrum derived from partial siRNP purification was useful in defining functional characteristics of this more diverse population of small RNAs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , MicroRNAs/metabolismo , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , MicroRNAs/análise , MicroRNAs/isolamento & purificação , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa