Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 54(5): 2771-2783, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37871089

RESUMO

Industries, such as manufacturing, are accelerating their embrace of the metaverse to achieve higher productivity, especially in complex industrial scheduling. In view of the growing parking challenges in large cities, high-density vehicle spatial scheduling is one of the potential solutions. Stack-based parking lots utilize parking robots to densely park vehicles in the vertical stacks like container stacking, which greatly reduces the aisle area in the parking lot, but requires complex scheduling algorithms to park and take out the vehicles. The existing high-density parking (HDP) scheduling algorithms are mainly heuristic methods, which only contain simple logic and are difficult to utilize information effectively. We propose a hybrid residual multiexpert (HIRE) reinforcement learning (RL) approach, a method for interactive learning in the digital industrial metaverse, which efficiently solves the HDP batch space scheduling problem. In our proposed framework, each heuristic scheduling method is considered as an expert. The neural network trained by RL assigns the expert strategy according to the current parking lot state. Furthermore, to avoid being limited by heuristic expert performance, the proposed hierarchical network framework also sets up a residual output channel. Experiments show that our proposed algorithm outperforms various advanced heuristic methods and the end-to-end RL method in the number of vehicle maneuvers, and has good robustness to the parking lot size and the estimation accuracy of vehicle exit time. We believe that the proposed HIRE RL method can be effectively and conveniently applied to practical application scenarios, which can be regarded as a key step for RL to enter the practical application stage of the industrial metaverse.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39255180

RESUMO

Reinforcement Learning (RL) has achieved tremendous success in many complex decision-making tasks. However, safety concerns are raised during deploying RL in real-world applications, leading to a growing demand for safe RL algorithms, such as in autonomous driving and robotics scenarios. While safe control has a long history, the study of safe RL algorithms is still in the early stages. To establish a good foundation for future safe RL research, in this paper, we provide a review of safe RL from the perspectives of methods, theories, and applications. Firstly, we review the progress of safe RL from five dimensions and come up with five crucial problems for safe RL being deployed in real-world applications, coined as "2H3W". Secondly, we analyze the algorithm and theory progress from the perspectives of answering the "2H3W" problems. Particularly, the sample complexity of safe RL algorithms is reviewed and discussed, followed by an introduction to the applications and benchmarks of safe RL algorithms. Finally, we open the discussion of the challenging problems in safe RL, hoping to inspire future research on this thread. To advance the study of safe RL algorithms, we release an open-sourced repository containing major safe RL algorithms at the link.

3.
Front Neurorobot ; 17: 1280341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023448

RESUMO

Deployment of Reinforcement Learning (RL) algorithms for robotics applications in the real world requires ensuring the safety of the robot and its environment. Safe Robot RL (SRRL) is a crucial step toward achieving human-robot coexistence. In this paper, we envision a human-centered SRRL framework consisting of three stages: safe exploration, safety value alignment, and safe collaboration. We examine the research gaps in these areas and propose to leverage interactive behaviors for SRRL. Interactive behaviors enable bi-directional information transfer between humans and robots, such as conversational robot ChatGPT. We argue that interactive behaviors need further attention from the SRRL community. We discuss four open challenges related to the robustness, efficiency, transparency, and adaptability of SRRL with interactive behaviors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa