Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 54(5): 2103-8, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25679437

RESUMO

Two Sm@C82 isomers have been well characterized for the first time by means of (13)C NMR spectroscopy, and their structures were unambiguously determined as Sm@C2v(9)-C82 and Sm@C3v(7)-C82, respectively. A combined study of single crystal X-ray diffraction and theoretical calculations suggest that in Sm@C2v(9)-C82 the preferred Sm(2+) ion position shall be located in a region slightly off the C2 axis of C2v(9)-C82. Moreover, the electrochemical surveys on these Sm@C82 isomers reveal that their redox activities are mainly determined by the properties of their carbon cages.

2.
Inorg Chem ; 54(9): 4243-8, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25782103

RESUMO

Although a non-IPR fullerene cage is common for endohedral cluster fullerenes, it is very rare for conventional endofullerenes M@C2n, probably because of the minimum geometry fit effect of the endohedral single metal ion. In this work, we report on a new non-IPR endofullerene Sm@C2v(19138)-C76, including its structural and electrochemical features. A combined study of single-crystal X-ray diffraction and DFT calculations not only elucidates the non-IPR cage structure of C2v(19138)-C76 but also suggests that the endohedral Sm(2+) ion prefers to reside along the C2 cage axis and close to the fused pentagon unit in the cage framework, indicative of a significant metal-cage interaction, which alone can stabilize the non-IPR cage. Furthermore, electrochemical studies reveal the fully reversible redox behaviors and small electrochemical gap of Sm@C2v(19138)-C76, which are comparable to those of IPR species Sm@D3h-C74.


Assuntos
Fulerenos/química , Níquel/química , Cátions Bivalentes , Cristalografia por Raios X , Técnicas Eletroquímicas , Isomerismo , Estrutura Molecular , Oxirredução , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa