Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105578, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110036

RESUMO

In Gram-positive bacteria, cell wall polysaccharides (CWPS) play critical roles in bacterial cell wall homeostasis and bacterial interactions with their immediate surroundings. In lactococci, CWPS consist of two components: a conserved rhamnan embedded in the peptidoglycan layer and a surface-exposed polysaccharide pellicle (PSP), which are linked together to form a large rhamnose-rich CWPS (Rha-CWPS). PSP, whose structure varies from strain to strain, is a receptor for many bacteriophages infecting lactococci. Here, we examined the first two steps of PSP biosynthesis, using in vitro enzymatic tests with lipid acceptor substrates combined with LC-MS analysis, AlfaFold2 modeling of protein 3D-structure, complementation experiments, and phage assays. We show that the PSP repeat unit is assembled on an undecaprenyl-monophosphate (C55P) lipid intermediate. Synthesis is initiated by the WpsA/WpsB complex with GlcNAc-P-C55 synthase activity and the PSP precursor GlcNAc-P-C55 is then elongated by specific glycosyltransferases that vary among lactococcal strains, resulting in PSPs with diverse structures. Also, we engineered the PSP biosynthesis pathway in lactococci to obtain a chimeric PSP structure, confirming the predicted glycosyltransferase specificities. This enabled us to highlight the importance of a single sugar residue of the PSP repeat unit in phage recognition. In conclusion, our results support a novel pathway for PSP biosynthesis on a lipid-monophosphate intermediate as an extracellular modification of rhamnan, unveiling an assembly machinery for complex Rha-CWPS with structural diversity in lactococci.


Assuntos
Parede Celular , Lactococcus , Polissacarídeos Bacterianos , Ramnose , Proteínas de Bactérias/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Glicosiltransferases/metabolismo , Lactococcus/classificação , Lactococcus/citologia , Lactococcus/metabolismo , Lactococcus/virologia , Lipídeos , Peptidoglicano/metabolismo , Polissacarídeos Bacterianos/metabolismo , Conformação Proteica , Ramnose/metabolismo , Especificidade por Substrato , Bacteriófagos/fisiologia
2.
J Biol Chem ; 298(10): 102488, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113580

RESUMO

Rhamnose-rich cell wall polysaccharides (Rha-CWPSs) have emerged as crucial cell wall components of numerous Gram-positive, ovoid-shaped bacteria-including streptococci, enterococci, and lactococci-of which many are of clinical or biotechnological importance. Rha-CWPS are composed of a conserved polyrhamnose backbone with side-chain substituents of variable size and structure. Because these substituents contain phosphate groups, Rha-CWPS can also be classified as polyanionic glycopolymers, similar to wall teichoic acids, of which they appear to be functional homologs. Recent advances have highlighted the critical role of these side-chain substituents in bacterial cell growth and division, as well as in specific interactions between bacteria and infecting bacteriophages or eukaryotic hosts. Here, we review the current state of knowledge on the structure and biosynthesis of Rha-CWPS in several ovoid-shaped bacterial species. We emphasize the role played by multicomponent transmembrane glycosylation systems in the addition of side-chain substituents of various sizes as extracytoplasmic modifications of the polyrhamnose backbone. We provide an overview of the contribution of Rha-CWPS to cell wall architecture and biogenesis and discuss current hypotheses regarding their importance in the cell division process. Finally, we sum up the critical roles that Rha-CWPS can play as bacteriophage receptors or in escaping host defenses, roles that are mediated mainly through their side-chain substituents. From an applied perspective, increased knowledge of Rha-CWPS can lead to advancements in strategies for preventing phage infection of lactococci and streptococci in food fermentation and for combating pathogenic streptococci and enterococci.


Assuntos
Bacteriófagos , Parede Celular , Bactérias Gram-Positivas , Parede Celular/química , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/citologia , Polissacarídeos/química , Ramnose , Ácidos Teicoicos/química , Divisão Celular/fisiologia
3.
Appl Environ Microbiol ; 89(6): e0210322, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222606

RESUMO

Lactococcus lactis and Lactococcus cremoris are Gram-positive lactic acid bacteria widely used as starter in milk fermentations. Lactococcal cells are covered with a polysaccharide pellicle (PSP) that was previously shown to act as the receptor for numerous bacteriophages of the Caudoviricetes class. Thus, mutant strains lacking PSP are phage resistant. However, because PSP is a key cell wall component, PSP-negative mutants exhibit dramatic alterations of cell shape and severe growth defects, which limit their technological value. In the present study, we isolated spontaneous mutants with improved growth, from L. cremoris PSP-negative mutants. These mutants grow at rates similar to the wild-type strain, and based on transmission electron microscopy analysis, they exhibit improved cell morphology compared to their parental PSP-negative mutants. In addition, the selected mutants maintain their phage resistance. Whole-genome sequencing of several such mutants showed that they carried a mutation in pbp2b, a gene encoding a penicillin-binding protein involved in peptidoglycan biosynthesis. Our results indicate that lowering or turning off PBP2b activity suppresses the requirement for PSP and ameliorates substantially bacterial fitness and morphology. IMPORTANCE Lactococcus lactis and Lactococcus cremoris are widely used in the dairy industry as a starter culture. As such, they are consistently challenged by bacteriophage infections which may result in reduced or failed milk acidification with associated economic losses. Bacteriophage infection starts with the recognition of a receptor at the cell surface, which was shown to be a cell wall polysaccharide (the polysaccharide pellicle [PSP]) for the majority of lactococcal phages. Lactococcal mutants devoid of PSP exhibit phage resistance but also reduced fitness, since their morphology and division are severely impaired. Here, we isolated spontaneous, food-grade non-PSP-producing L. cremoris mutants resistant to bacteriophage infection with a restored fitness. This study provides an approach to isolate non-GMO phage-resistant L. cremoris and L. lactis strains, which can be applied to strains with technological functionalities. Also, our results highlight for the first time the link between peptidoglycan and cell wall polysaccharide biosynthesis.


Assuntos
Bacteriófagos , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Peptidoglicano/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Polissacarídeos/metabolismo , Mutação , Proteínas de Transporte/metabolismo
4.
mBio ; 12(1)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531389

RESUMO

Enterococcus faecalis is a commensal Gram-positive pathogen found in the intestines of mammals and is also a leading cause of severe infections occurring mainly among antibiotic-treated dysbiotic hospitalized patients. Like most intestinal bacteria, E. faecalis does not synthesize heme (in this report, heme refers to iron protoporphyrin IX regardless of the iron redox state). Nevertheless, environmental heme can improve E. faecalis fitness by activating respiration metabolism and a catalase that limits hydrogen peroxide stress. Since free heme also generates toxicity, its intracellular levels need to be strictly controlled. Here, we describe a unique transcriptional regulator, FhtR (named FhtR for faecalis heme transport regulator), which manages heme homeostasis by controlling an HrtBA-like efflux pump (named HrtBA Ef for the HrtBA from E. faecalis). We show that FhtR, by managing intracellular heme concentration, regulates the functional expression of the heme-dependent catalase A (KatA), thus participating in heme detoxification. The biochemical features of FhtR binding to DNA, and its interaction with heme that induces efflux, are characterized. The FhtR-HrtBA Ef system is shown to be relevant in a mouse intestinal model. We further show that FhtR senses heme from blood and hemoglobin but also from crossfeeding by Escherichia coli These findings bring to light the central role of heme sensing by FhtR in response to heme fluctuations within the gastrointestinal tract, which allow this pathogen to limit heme toxicity while ensuring expression of an oxidative defense system.IMPORTANCEEnterococcus faecalis, a normal and harmless colonizer of the human intestinal flora can cause severe infectious diseases in immunocompromised patients, particularly those that have been heavily treated with antibiotics. Therefore, it is important to understand the factors that promote its resistance and its virulence. E. faecalis, which cannot synthesize heme, an essential but toxic metabolite, needs to scavenge this molecule from the host to respire and fight stress generated by oxidants. Here, we report a new mechanism used by E. faecalis to sense heme and trigger the synthesis of a heme efflux pump that balances the amount of heme inside the bacteria. We show in a mouse model that E. faecalis uses this mechanisms within the gastrointestinal tract.


Assuntos
Proteínas de Bactérias/fisiologia , Enterococcus faecalis/metabolismo , Heme/metabolismo , Animais , Feminino , Trato Gastrointestinal/microbiologia , Homeostase , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa