Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1359319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584597

RESUMO

The α2-adrenoceptor agonist dexmedetomidine is a commonly used drug for sedatives in clinics and has analgesic effects; however, its mechanism of analgesia in the spine remains unclear. In this study, we systematically used behavioural and transcriptomic sequencing, pharmacological intervention, electrophysiological recording and ultrasound imaging to explore the analgesic effects of the α2-adrenoceptor and its molecular mechanism. Firstly, we found that spinal nerve injury changed the spinal transcriptome expression, and the differential genes were mainly related to calcium signalling and tissue metabolic pathways. In addition, α2-adrenoceptor mRNA expression was significantly upregulated, and α2-adrenoceptor was significantly colocalised with markers, particularly neuronal markers. Intrathecal dexmedetomidine suppressed neuropathic pain and acute inflammatory pain in a dose-dependent manner. The transcriptome results demonstrated that the analgesic effect of dexmedetomidine may be related to the modulation of neuronal metabolism. Weighted gene correlation network analysis indicated that turquoise, brown, yellow and grey modules were the most correlated with dexmedetomidine-induced analgesic effects. Bioinformatics also annotated the involvement of metabolic processes and neural plasticity. A cardiovascular-mitochondrial interaction was found, and ultrasound imaging revealed that injection of dexmedetomidine significantly enhanced spinal cord perfusion in rats with neuropathic pain, which might be regulated by pyruvate dehydrogenase kinase 4 (pdk4), cholesterol 25-hydroxylase (ch25 h) and GTP cyclohydrolase 1 (gch1). Increasing the perfusion doses of dexmedetomidine significantly suppressed the frequency and amplitude of spinal nerve ligation-induced miniature excitatory postsynaptic currents. Overall, dexmedetomidine exerts analgesic effects by restoring neuronal metabolic processes through agonism of the α2-adrenoceptor and subsequently inhibiting changes in synaptic plasticity.

2.
Neural Regen Res ; 18(8): 1789-1794, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36751807

RESUMO

The spleen is critical for immunity. It is the largest immune organ and immune center in the peripheral system. While the relationship between behavior and immunity has been demonstrated in physiology and diseases, the role of the spleen in behavior is not clear. To investigate the effects of the spleen on behaviors, we performed a refined splenectomy procedure on C57BL/6J mice and performed an open field test, circadian rhythm test, elevated plus maze, sucrose preference test, and Barnes maze test. Splenectomy did not induce changes in general locomotion, circadian rhythms, learning and memory, or depression/anxiety-related behaviors. To further investigate the effects of spleen on stress susceptibility, we established mouse models of depression through chronic unpredictable mild stress. The behavioral performances of mice subjected to splenectomy showed no differences from control animals. These findings suggest that splenectomy does not cause changes in baseline behavioral performance in mice.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa