Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(38): 15098-15107, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094135

RESUMO

A series of heterometallic tetranuclear clusters, Ln2Ni2(NO3)4L4(µ3-OCH3)2·2(CH3CN) (Ln = Gd(1), Tb(2), Dy(3), Ho(4), Er(5); HL = methyl 3-methoxysalicylate), were synthesized solvothermally. The intramolecular synergistic effect of two metal centers of Ln(III) and Ni(II) and the exposed multimetallic sites serving as Lewis acid activators greatly increase the efficiency of the CO2 conversion, and the yield for cluster 3 can be achieved at 96% at atmospheric pressure and low temperature. In particular, the self-assembly multimetal center with polydentate ligand shows good generality and enhanced recyclability. The design of such 3d-4f heterometallic clusters provides an effective strategy for the conversion of CO2 under greener conditions. Meanwhile, magnetic investigations indicate that cluster 1 is a good candidate for magnetic refrigerant materials with a relatively large magnetocaloric effect (MCE) (-ΔSm = 28.5 J kg-1 K-1 at 3.0 K and 7.0 T), and cluster 3 shows single-molecular magnet behavior under zero dc field. Heterometallic clusters with special magnetic properties and good catalytic behavior for the conversion of CO2 are rare. Thus, they are potential bifunctional materials applied in practice.

2.
Nanoscale Res Lett ; 12(1): 330, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28476085

RESUMO

We study the magnetic properties of an epitaxial growth bilayer composed of ferromagnetic La0.7Sr0.3MnO3 (LSMO) and paramagnetic LaNiO3 (LNO) on SrTiO3 (STO) substrates. We find that the stack order of the bilayer heterostructure plays a key role in the interfacial coupling strength, and the coupling at the LSMO(top)/LNO(bottom) interface is much stronger than that at the LNO(top)/LSMO(bottom). Moreover, a strong spin glass state has been observed at the LSMO/LNO interface, which is further confirmed by two facts: first, that the dependence of the irreversible temperature on the cooling magnetic field follows the Almeida-Thouless line and, second, that the relaxation of the thermal remnant magnetization can be fitted by a stretched exponential function. Interestingly, we also find an exchange bias effect at the LSMO/LNO bilayer below the spin glass freezing temperature, indicating that the exchange bias is strongly correlated with the spin glass state at its interface.

3.
Nanoscale Res Lett ; 10(1): 2419, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26055471

RESUMO

Arrays of epitaxial Fe3O4 nanodots were prepared using laser molecular beam epitaxy (LMBE), with the aid of ultrathin porous anodized aluminum templates. An Fe3O4 film was also prepared using LMBE. Atomic force microscopy and scanning electron microscopy images showed that the Fe3O4 nanodots existed over large areas of well-ordered hexagonal arrays with dot diameters (D) of 40, 70, and 140 nm; height of approximately 20 nm; and inter-dot distances (D int) of 67, 110, and 160 nm. The calculated nanodot density was as high as 0.18 Tb in.(-2) when D = 40 nm. X-ray diffraction patterns indicated that the as-grown Fe3O4 nanodots and the film had good textures of (004) orientation. Both the film and the nanodot arrays exhibited magnetic anisotropy; the anisotropy of the nanoarray weakened with decreasing dot size. The Verwey transition temperature of the film and nanodot arrays with D ≥ 70 nm was observed at around 120 K, similar to that of the Fe3O4 bulk; however, no clear transition was observed from the small nanodot array with D = 40 nm. Results showed that magnetic properties could be tailored through the morphology of nanodots. Therefore, Fe3O4 nanodot arrays may be applied in high-density magnetic storage and spintronic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa