Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Bioorg Med Chem ; 40: 116187, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965840

RESUMO

Carboxylesterase 2 (CES2) is one of the most important Phase I drug metabolizing enzymes in the carboxylesterase family. It plays crucial roles in the bioavailability of oral ester prodrugs and the therapeutic effect of some anticancer drugs such as irinotecan (CPT11) and capecitabine. In addition to the well-known roles of CES2 in xenobiotic metabolism, the enzyme also participates in endogenous metabolism and the production of lipids. In this study, we synthesized a series of pyrazolones and assayed their inhibitory effects against CES2 in vitro. Structure-activity relationship analysis of these pyrazolones reveals that the introduction of 4-methylphenyl unit (R1), 4-methylbenzyl (R2) and cyclohexyl (R3) moieties are beneficial for CES2 inhibition. Guided by these SARs results, 1-cyclohexyl-4-(4-methylbenzyl)-3-p-tolyl-1H- pyrazol-5(4H)-one (27) was designed and synthesized. Further investigations demonstrated that the compound 27 exhibited stronger CES2 inhibition activity with a lower IC50 value (0.13 µM). The inhibition kinetic study demonstrated that compound 27 inhibited the hydrolysis of CES2-fluorescein diacetate (FD) through non-competitive inhibition. In addition, the molecular docking showed that the core of pyrazolone, the cyclohexane moiety, 4-methylbenzyl and 4-methylphenyl groups in compound 27 all played important roles with the amino acid residues of CSE2. Also, compound 27 could inhibit adipocyte adipogenesis induced by mouse preadipocytes. In brief, we designed and synthesized a novel pyrazolone compound with a strong inhibitory ability on CES2 and could inhibit the adipogenesis induced by mouse preadipocytes, which can be served as a promising lead compound for the development of more potent pyrazolone-type CES2 inhibitors, and also used as a potential tool for exploring the biological functions of CES2 in human being.


Assuntos
Adipogenia/efeitos dos fármacos , Carboxilesterase/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Pirazolonas/farmacologia , Carboxilesterase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazolonas/síntese química , Pirazolonas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Bioorg Med Chem ; 29: 115853, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33214035

RESUMO

Pancreatic lipase (PL), a crucial enzyme responsible for hydrolysis of dietary lipids, has been validated as a key therapeutic target to prevent and treat obesity-associated metabolic disorders. Herein, we report the design, synthesis and biological evaluation of a series of chalcone-like compounds as potent and reversible PL inhibitors. Following two rounds of structural modifications at both A and B rings of a chalcone-like skeleton, structure-PL inhibition relationships of the chalcone-like compounds were studied, while the key substituents that would be beneficial for PL inhibition were revealed. Among all tested chalcone-like compounds, compound B13 (a novel chalcone-like compound bearing two long carbon chains) displayed the most potent PL inhibition activity, with an IC50 value of 0.33 µM. Inhibition kinetic analyses demonstrated that B13 could potently inhibit PL-mediated 4-MUO hydrolysis in a mixed inhibition manner, with the Ki value of 0.12 µM. Molecular docking simulations suggested that B13 could tightly bind on PL at both the catalytic site and a non-catalytic site that was located on the surface of PL, which was consistent with the mixed inhibition mode of this agent. In addition, B13 displayed excellent stability in artificial gastrointestinal fluids and good metabolic stability in human liver preparations. Collectively, our findings suggested that chalcone-like compounds were good choices for design and development of orally administrated PL inhibitors, while B13 could be served as a promising lead compound to develop novel anti-obesity agents via targeting on PL.


Assuntos
Chalcona/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Lipase/antagonistas & inibidores , Animais , Chalcona/síntese química , Chalcona/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Lipase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Pâncreas/enzimologia , Relação Estrutura-Atividade , Suínos
3.
J Nat Prod ; 83(7): 2287-2293, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32662266

RESUMO

Three new cyclohexapeptides, petrosamides A-C (1-3), were isolated from the sponge-derived fungus Aspergillus sp. 151304. Their structures were elucidated by detailed 1D and 2D spectroscopic analyses, and the absolute configurations of the amino acid residues were determined by the advanced Marfey's method. These peptides displayed significant and dose-dependent pancreatic lipase (PL) inhibitory activities, with IC50 values of 7.6 ± 1.5, 1.8 ± 0.3, and 0.5 ± 0.1 µM, respectively. Further inhibition kinetics analyses showed that compound 3 inhibited PL in a noncompetitive manner, while molecular dynamics simulation revealed that it could bind to PL at the entrance of the catalytic pocket.


Assuntos
Aspergillus/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Lipase/antagonistas & inibidores , Biologia Marinha , Oligopeptídeos/farmacologia , Pâncreas/enzimologia , Peptídeos Cíclicos/farmacologia , Poríferos/microbiologia , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oligopeptídeos/química , Peptídeos Cíclicos/química
4.
Bioorg Chem ; 105: 104367, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33080495

RESUMO

Human Carboxylesterase 2A (hCES2A), one of the most important serine hydrolases, plays crucial roles in the hydrolysis and the metabolic activation of a wide range of esters and amides. Increasing evidence has indicated that potent inhibition on intestinal hCES2A may reduce the excessive accumulation of SN-38 (the hydrolytic metabolite of irinotecan with potent cytotoxicity) in the intestinal tract and thereby alleviate the intestinal toxicity triggered by irinotecan. In this study, more than sixty natural alkaloids have been collected and their inhibitory effects against hCES2A are assayed using a fluorescence-based biochemical assay. Following preliminary screening, seventeen alkaloids are found with strong to moderate hCES2A inhibition activity. Primary structure-activity relationships (SAR) analysis of natural isoquinoline alkaloids reveal that the benzo-1,3-dioxole group and the aromatic pyridine structure are beneficial for hCES2A inhibition. Further investigations demonstrate that a steroidal alkaloid reserpine exhibits strong hCES2A inhibition activity (IC50 = 0.94 µM) and high selectivity over other human serine hydrolases including hCES1A, dipeptidyl peptidase IV (DPP-IV), butyrylcholinesterase (BChE) and thrombin. Inhibition kinetic analyses demonstrated that reserpine acts as a non-competitive inhibitor against hCES2A-mediated FD hydrolysis. Molecular docking simulations demonstrated that the potent inhibition of hCES2A by reserpine could partially be attributed to its strong σ-π and S-π interactions between reserpine and hCES2A. Collectively, our findings suggest that reserpine is a potent and highly selective inhibitor of hCES2A, which can be served as a promising lead compound for the development of more efficacious and selective alkaloids-type hCES2A inhibitors for biomedical applications.


Assuntos
Alcaloides/farmacologia , Produtos Biológicos/farmacologia , Carboxilesterase/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Alcaloides/síntese química , Alcaloides/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Carboxilesterase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
5.
Ecotoxicol Environ Saf ; 192: 110305, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070782

RESUMO

Environmental xenoestrogens are the most accessible endocrine disrupting chemicals that have been reported with harmful effects on human health. Although the influences of xenoestrogens on the endocrine system have been extensively studied, it remains unclear whether these xenoestrogens can affect the digestive system in mammals. This study aimed to investigate the inhibitory effects and the underlying mechanism of six non-steroidal synthetic estrogens (including hexestrol, diethylstilbestrol, dienestrol, bisphenol A, bisphenol AF and bisphenol Z) on pancreatic lipase (PL), a key digestive enzyme responsible for lipid digestion and absorption in mammals. The results clearly demonstrated that hexestrol, diethylstilbestrol and dienestrol exhibited strong inhibition on PL, with the IC50 values of less than 1.0 µM. Further investigations elucidated that these three synthetic estrogens functioned as mixed inhibitors of PL, with the Ki values of less than 1 µM. Moreover, molecular dynamics simulations showed that diethylstilbestrol and its analogues might block the binding of substrate on PL via occupying the portal to the active site of PL and thereby inhibit the hydrolytic activity of this key enzyme. Collectively, these results suggested that diethylstilbestrol and its analogues were potent PL inhibitors, which might play a profound role in lipid absorption and weight gain in mammals.


Assuntos
Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Inibidores Enzimáticos/toxicidade , Lipase/antagonistas & inibidores , Pâncreas/enzimologia , Animais , Domínio Catalítico , Estrogênios não Esteroides/toxicidade , Humanos , Lipase/química , Lipase/metabolismo , Xenobióticos
6.
Bioorg Chem ; 92: 103199, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31446241

RESUMO

Ginkgo Biloba leaf extract has been widely used for the prevention and treatment of thrombosis and cardiovascular disease in both eastern and western countries, but the bioactive constituents and the underlying mechanism of anti-thrombosis have not been fully characterized. The purpose of this study was to investigate the inhibitory effects of major constituents in Ginkgo biloba on human thrombin, a key serine protease regulating the blood coagulation cascade and the processes of thrombosis. To this end, a fluorescence-based biochemical assay was used to assay the inhibitory effects of sixteen major constituents from Ginkgo biloba on human thrombin. Among all tested natural compounds, four biflavones (ginkgetin, isoginkgetin, bilobetin and amentoflavone), and five flavonoids (luteolin, apigenin, quercetin, kaempferol and isorhamnetin) were found with thrombin inhibition activity, with the IC50 values ranging from 8.05 µM to 82.08 µM. Inhibition kinetic analyses demonstrated that four biflavones were mixed inhibitors against thrombin-mediated Z-GGRAMC acetate hydrolysis, with the Ki values ranging from 4.12 µM to 11.01 µM. Molecular docking method showed that the four biflavones could occupy the active cavity with strong interactions of salt bridges and hydrogen bonds. In addition, mass spectrometry-based lysine labeling reactivity assay suggested that the biflavones could bind on human thrombin at exosite I rather than exosite II. All these findings suggested that the biflavones in Ginkgo biloba were naturally occurring inhibitors of human thrombin, and these compounds could be used as lead compounds for the development of novel thrombin inhibitors with improved efficacy and high safety profiles.


Assuntos
Flavonas/química , Ginkgo biloba/química , Hemostáticos/química , Extratos Vegetais/química , Folhas de Planta/química , Inibidores de Serina Proteinase/química , Trombina/antagonistas & inibidores , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Flavonas/metabolismo , Hemostáticos/farmacologia , Humanos , Cinética , Lisina/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/metabolismo , Ligação Proteica , Inibidores de Serina Proteinase/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
7.
J Virol ; 91(17)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637760

RESUMO

Although shrews are one of the largest groups of mammals, little is known about their role in the evolution and transmission of viral pathogens, including coronaviruses (CoVs). We captured 266 Asian house shrews (Suncus murinus) in Jiangxi and Zhejiang Provinces, China, during 2013 to 2015. CoV RNA was detected in 24 Asian house shrews, with an overall prevalence of 9.02%. Complete viral genome sequences were successfully recovered from the RNA-positive samples. The newly discovered shrew CoV fell into four lineages reflecting their geographic origins, indicative of largely allopatric evolution. Notably, these viruses were most closely related to alphacoronaviruses but sufficiently divergent that they should be considered a novel member of the genus Alphacoronavirus, which we denote Wénchéng shrew virus (WESV). Phylogenetic analysis revealed that WESV was a highly divergent member of the alphacoronaviruses and, more dramatically, that the S gene of WESV fell in a cluster that was genetically distinct from that of known coronaviruses. The divergent position of WESV suggests that coronaviruses have a long association with Asian house shrews. In addition, the genome of WESV contains a distinct NS7 gene that exhibits no sequence similarity to genes of any known viruses. Together, these data suggest that shrews are natural reservoirs for coronaviruses and may have played an important and long-term role in CoV evolution.IMPORTANCE The subfamily Coronavirinae contains several notorious human and animal pathogens, including severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and porcine epidemic diarrhea virus. Because of their genetic diversity and phylogenetic relationships, it has been proposed that the alphacoronaviruses likely have their ultimate ancestry in the viruses residing in bats. Here, we describe a novel alphacoronavirus (Wénchéng shrew virus [WESV]) that was sampled from Asian house shrews in China. Notably, WESV is a highly divergent member of the alphacoronaviruses and possesses an S gene that is genetically distinct from those of all known coronaviruses. In addition, the genome of WESV contains a distinct NS7 gene that exhibits no sequence similarity to those of any known viruses. Together, these data suggest that shrews are important and longstanding hosts for coronaviruses that merit additional research and surveillance.

8.
J Asian Nat Prod Res ; 19(4): 347-357, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28367638

RESUMO

Valienamine and ß-valienamine are representative C7 N aminocyclitols with significant glycosidase inhibition activity that have been developed as important precursors of drugs for diabetes and lysosomal storage diseases, respectively. The quantitative analysis of these chiral compounds is crucial for asymmetric in vitro biosynthetic processes for converting valienone into valienamine epimers using aminotransferase. Here, we developed an efficient and sensitive method for separation and quantitative analysis of chiral valienamine using reversed-phase high-performance liquid chromatography (HPLC) through o-phthalaldehyde (OPA) pre-column derivatization of the analytes. The epimers were derivatized by OPA in borate buffer (pH 9.0) at room temperature for 30 s, separated on an Eclipse XDB-C18 (5 µm, 4.6 × 150 mm) column, eluted with 22% acetonitrile at 30 °C for 18 min, and detected by a fluorescence detector using 445 nm emission and 340 nm excitation wavelengths. The average resolution of the epimers is 3.86, and the concentration linearity is in the range of 0.02-20 µg/ml. The method proved to be effective, sensitive, and reliable with good intra- and inter-day precision and accuracy, and successfully evaluated the enantiopreference and catalytic capability of the potential aminotransferases on an unnatural prochiral substrate, facilitating the design of an asymmetric biosynthetic route for optically pure valienamine and ß-valienamine.


Assuntos
Cicloexenos/síntese química , Hexosaminas/síntese química , o-Ftalaldeído/química , Catálise , Cromatografia Líquida de Alta Pressão/métodos , Cicloexenos/química , Hexosaminas/química , Estrutura Molecular , Estereoisomerismo
9.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547933

RESUMO

BACKGROUND: The carcinogenic transcription factor c-Myc is the most aggressive oncogene, which drive malignant transformation and dissemination of triple-negative breast cancer (TNBC). Recruitment of many cofactors, especially WDR5, a protein that nucleates H3K4me chromatin modifying complexes, play a pivotal role in regulating c-Myc-dependent gene transcription, a critical process for c-Myc signaling to function in a variety of biological and pathological contexts. For this reason, interrupting the interaction between c-Myc and the transcription cofactor WDR5 may become the most promising new strategy for treating c-Myc driven TNBC. METHODS: Immunoprecipitation and mass spectrometry (IP-MS) is used to screen proteins that bind c-Myc/WDR5 interactions. The interaction of METTL3 with c-Myc/WDR5 in breast cancer tissues and TNBC cells was detected by Co-IP and immunofluorescence. Subsequently, we further analyzed the influence of METTL3 expression on c-Myc/WDR5 protein expression and its interaction stability by Western blot and Co-IP. The correlation between METTL3 and c-Myc pathway was analyzed by ChIP-seq sequencing and METTL3 knockdown transcriptome data. The effect of METTL3 expression on c-Myc transcriptional activity was detected by ChIP-qPCR and Dual Luciferase Reporter. At the same time, the overexpression vector METTL3-MUT (m6A) was constructed, which mutated the methyltransferase active site (Aa395-398, DPPW/APPA), and further explored whether the interaction between METTL3 and c-Myc/WDR5 was independent of methyltransferase activity. In addition, we also detected the changes of METTL3 expression on TNBC's sensitivity to small molecule inhibitors such as JQ1 and OICR9429 by CCK8, Transwell and clonal formation assays. Finally, we further verified our conclusions in spontaneous tumor formation mouse MMTV-PyMT and nude mouse orthotopic transplantation tumor models. RESULTS: METTL3 was found to bind mainly to c-Myc/WDR5 protein in the nucleus. It enhances the stability of c-Myc/WDR5 interaction through its methyltransferase independent mechanism, thereby enhancing the transcriptional activity of c-Myc on downstream glucose metabolism genes. Notably, the study also confirmed that METTL3 can directly participate in the transcription of glucose metabolism genes as a transcription factor, and knockdown METTL3 enhances the drug sensitivity of breast cancer cells to small molecule inhibitors JQ1 and OICR9429. The study was further confirmed by spontaneous tumor formation mouse MMTV-PyMT and nude mouse orthotopic transplantation tumor models. CONCLUSION: METTL3 binds to the c-Myc/WDR5 protein complex and promotes glycolysis, which plays a powerful role in promoting TNBC progression. Our findings further broaden our understanding of the role and mechanism of action of METTL3, and may open up new therapeutic avenues for effective treatment of TNBC with high c-Myc expression.


Assuntos
Glicólise , Metiltransferases , Proteínas Proto-Oncogênicas c-myc , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
10.
Am J Cancer Res ; 13(7): 3185-3202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560008

RESUMO

Transforming Growth factor-ß (TGF-ß)/Smad signaling is a complex regulatory network that both inhibits and promotes tumorigenesis. However, the mechanisms underlying the function of TGF-ß/Smad signaling pathway remain to be fully elucidated. As a methyltransferase, METTL3 is closely related to tumor development, but the role of METTL3 in the proliferation and metastasis of TGF-ß/Smad-activated gastric cancer (GC) is unclear. In this study, we identified TGF-ß/Smad2/3 axis as an important carcinogenic pathway in GC, which significantly promoted the proliferation and metastasis of GC. Furthermore, we found that Smad3 mRNA could be modified by m6A, which was subsequently recognized and stabilized by IGF2BP2, thereby enhancing Smad3 protein expression and promoting the activation of TGF-ß/Smad pathway. Importantly, we also found that METTL3 could combine with p-Smad3 to regulate the transcription of downstream target genes. Therefore, this study revealed a novel mechanism by which METTL3 synergistically regulates TGF-ß/Smad2/3 signaling and provide a new potential therapeutic target for the treatment of GC.

11.
J Med Chem ; 66(10): 6743-6755, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37145039

RESUMO

Cytochrome P450 3A4 (CYP3A4) is a key xenobiotic-metabolizing enzyme-mediated drug metabolism and drug-drug interaction (DDI). Herein, an effective strategy was used to rationally construct a practical two-photon fluorogenic substrate for hCYP3A4. Following two-round structure-based substrate discovery and optimization, we have successfully constructed a hCYP3A4 fluorogenic substrate (F8) with desirable features, including high binding affinity, rapid response, excellent isoform specificity, and low cytotoxicity. Under physiological conditions, F8 is readily metabolized by hCYP3A4 to form a brightly fluorescent product (4-OH F8) that can be easily detected by various fluorescence devices. The practicality of F8 for real-time sensing and functional imaging of hCYP3A4 has been examined in tissue preparations, living cells, and organ slices. F8 also demonstrates good performance for high-throughput screening of hCYP3A4 inhibitors and assessing DDI potentials in vivo. Collectively, this study develops an advanced molecular tool for sensing CYP3A4 activities in biological systems, which strongly facilitates CYP3A4-associated fundamental and applied research studies.


Assuntos
Citocromo P-450 CYP3A , Corantes Fluorescentes , Citocromo P-450 CYP3A/metabolismo , Corantes Fluorescentes/farmacologia , Interações Medicamentosas
12.
Am J Cancer Res ; 13(7): 2948-2968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560007

RESUMO

Recent studies have suggested that ubiquitin-conjugating enzyme E2D1 (UBE2D1) is involved in tumor progression. In this study, we found that UBE2D1 expression was upregulated in breast cancer (BC) and was related to the prognosis of BC patients. Through in vitro and in vivo experiments, we demonstrated the aberrant expression of UBE2D1 promoted the proliferation and migration of BC cells, and the IGF2BP2-mediated N6-methyladenosine (m6A) modification increased the stability of UBE2D1 mRNA. Mechanistically, UBE2D1 expression regulated the activity of TGF-ß signaling through modulating the expression and the phosphorylation level of Smad2/3. Furthermore, UBE2D1 directly bound to Smad2/3 and affected the subsequent binding of Smad2 and Smad3, which is a necessary step for TGF-ß signaling activation. Thus, our study reveals a pro-oncogenic role of UBE2D1 in the progression of BC and may provide novel strategies for BC treatment.

13.
PLoS One ; 17(5): e0267706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35639783

RESUMO

BACKGROUND: Glucocorticoid-induced osteoporosis (GIOP) is the most common secondary osteoporosis, alendronate (ALE) and teriparatide (TPTD) are widely used in the treatment of GIOP. However, which of these two drugs has a better curative effect needs the support of evidence-based medicine. METHODS: We searched PubMed, Embase, Cochrane Library, Web of Science, and Google Scholar for randomized controlled trials of ALE and TPTD in the treatment of glucocorticoid-induced osteoporosis until February 2022. These patients included in the study took glucocorticoid doses greater than 7.5 mg/d for more than 3 months before treatment with ALE and TPTD. The risk ratio (RR) and its 95% confidence interval (CI) are used as the influence index of discontinuous data, and the standardized mean difference (SMD) and its 95% CI are used as the influence index of continuous data. RESULTS: A total of 4102 patients were enrolled in all 5 studies that met the admission criteria. We found that compared with ALE, TPTD could reduce the rate of new vertebral fracture (RR = 0.13, 95% CI: 0.05-0.34, P<0.00001). TPTD increased LS bone mineral density (BMD) (0.53, 95% CI 0.42-0.64, P<0.00001), TH BMD (0.17, 95% CI 0.05-0.28, P = 0.004) and FN BMD (0.17, 95% CI 0.05-0.29, P = 0.006) compared to ALE. However, there was no significant difference in the incidence of non-vertebral fracture and adverse events between the two groups. CONCLUSIONS: Compared with ALE, TPTD is an effective drug to reduce vertebral fracture risk in patients with GIOP. Furthermore, long-term use of TPTD can increase the bone mineral density of LS, FN, and TH.


Assuntos
Conservadores da Densidade Óssea , Osteoporose , Fraturas da Coluna Vertebral , Alendronato/efeitos adversos , Conservadores da Densidade Óssea/efeitos adversos , Glucocorticoides/efeitos adversos , Humanos , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Teriparatida/efeitos adversos
14.
J Pharm Anal ; 12(4): 683-691, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36105167

RESUMO

Although herbal medicines (HMs) are widely used in the prevention and treatment of obesity and obesity-associated disorders, the key constituents exhibiting anti-obesity activity and their molecular mechanisms are poorly understood. Recently, we assessed the inhibitory potentials of several HMs against human pancreatic lipase (hPL, a key therapeutic target for human obesity), among which the root-extract of Rhodiola crenulata (ERC) showed the most potent anti-hPL activity. In this study, we adopted an integrated strategy, involving bioactivity-guided fractionation techniques, chemical profiling, and biochemical assays, to identify the key anti-hPL constituents in ERC. Nine ERC fractions (retention time = 12.5-35 min), obtained using reverse-phase liquid chromatography, showed strong anti-hPL activity, while the major constituents in these bioactive fractions were subsequently identified using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS/MS). Among the identified ERC constituents, 1,2,3,4,6-penta-O-galloyl-ß-d-glucopyranose (PGG) and catechin gallate (CG) showed the most potent anti-hPL activity, with pIC50 values of 7.59 ± 0.03 and 7.68 ± 0.23, respectively. Further investigations revealed that PGG and CG potently inhibited hPL in a non-competitive manner, with inhibition constant (K i) values of 0.012 and 0.082 µM, respectively. Collectively, our integrative analyses enabled us to efficiently identify and characterize the key anti-obesity constituents in ERC, as well as to elucidate their anti-hPL mechanisms. These findings provide convincing evidence in support of the anti-obesity and lipid-lowering properties of ERC.

15.
Pediatr Hematol Oncol ; 28(3): 187-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21271777

RESUMO

Leukemias arising from immature nature killer (NK) cells have been proposed as distinct entities and are rare. Treatment and prognosis of these diseases are controversial, and data on children are limited. According to the literature, one of these distinct leukemias may be myeloid/NK cell precursor acute leukemia (MNKPL), with the blasts being cytochemically myeloperoxidase negative (MPO(-)) and phenotypically CD56(+)CD3(-)CD7(+)CD34(+) and myeloid antigens(+). The other may be myeloid/NK cell acute leukemia (MNKL), in which the blasts were cytochemically MPO(dim) and phenotypically CD56(+)CD16(-)CD3(-)CD33(+)HLA-DR(-). Between 2005 and 2008, 4 MNKPL and 1 MNKL children aged 1.3 to 12.5 years were encountered in the First Affiliated Hospital of Sun Yat-Sen University. In those with MNKPL, remarkable extramedullary involvement usually occurring in adults was not observed; however, myelofibrosis was found in 2 children. The child with MNKL abandoned treatment. Those with MNKPL were treated with a protocol designed for childhood high-risk acute lymphoblastic leukemia (ALL) containing cytarabine, mitoxantrone, etoposide, l-asparaginase, and methotrexate according to the myeloid and lymphoid characteristics of MNKPL. They responded slowly to chemotherapy and were in complete remission (CR) for 26 to 63 months, except 1 who died in CR from pneumonia. They had longer survival and seemed to have a better outcome than those reported previously. In conclusion, childhood leukemias with immature NK cell markers may have different characteristics from their adult counterparts. A protocol including agents used for acute myeloid leukemia combined with those for ALL is seemingly effective for treatment of MNKPL. However, a modified treatment strategy designed more specifically for MNKPL and longer observations are needed.


Assuntos
Células Matadoras Naturais/patologia , Leucemia Linfoide/diagnóstico , Leucemia Mieloide/diagnóstico , Adolescente , Adulto , Antígenos CD/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Asparaginase/administração & dosagem , Criança , Pré-Escolar , Citarabina/administração & dosagem , Etoposídeo/administração & dosagem , Feminino , Humanos , Imunofenotipagem , Lactente , Leucemia Linfoide/tratamento farmacológico , Leucemia Linfoide/etiologia , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/etiologia , Masculino , Metotrexato/administração & dosagem , Mitoxantrona/administração & dosagem , Indução de Remissão , Resultado do Tratamento
16.
Int J Biol Macromol ; 187: 976-987, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34333006

RESUMO

Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.


Assuntos
Proteases Virais 3C/química , Proteases Virais 3C/metabolismo , Ampelopsis/química , Antivirais/farmacologia , Flavonoides/farmacologia , SARS-CoV-2/enzimologia , Antivirais/química , Sítios de Ligação/efeitos dos fármacos , Cisteína/metabolismo , Flavonoides/química , Flavonóis/química , Flavonóis/farmacologia , Espectrometria de Massas , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos
17.
ChemMedChem ; 16(10): 1600-1604, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33527731

RESUMO

Pancreatic lipase (PL), a key target for the prevention and treatment of obesity, plays crucial roles in the hydrolysis and absorption of in dietary fat. In this study, a series of pyrazolones was synthesized, and their inhibitory effects against PL were assayed by using 4-methylumbelliferyl oleate (4-MUO) as optical substrate for PL. Comprehensive structure-activity relationship analysis of these pyrazolones led us to design and synthesize a novel compound P32 (5-(naphthalen-2-yl)-2-phenyl-4-(thiophen-2-ylmethyl)-2,4-dihydro-3H-pyrazol-3-one) as a potent mixed-competitive inhibitor of PL (IC50 =0.30 µM). In addition, P32 displayed some selectivity over other known serine hydrolases. A molecular docking study for P32 demonstrated that the inhibitory activity of P32 towards PL could be attributed to the π-π interactions of 2-naphthyl unit (R1 ) and hydrophobic interactions of phenyl moiety (R3 ) with the active site of PL. Thus, P32 could serve as promising lead compound for the development of more efficacious and selective pyrazolones-type PL inhibitors for biomedical applications.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Lipase/antagonistas & inibidores , Pirazolonas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Lipase/metabolismo , Modelos Moleculares , Estrutura Molecular , Pâncreas/enzimologia , Pirazolonas/síntese química , Pirazolonas/química , Relação Estrutura-Atividade
18.
Front Pharmacol ; 12: 655659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084136

RESUMO

Human carboxylesterase 2 (CES2), one of the most abundant hydrolases distributed in the small intestine, has been validated as a key therapeutic target to ameliorate the intestinal toxicity caused by irinotecan. This study aims to discover efficacious CES2 inhibitors from natural products and to characterize the inhibition potentials and inhibitory mechanisms of the newly identified CES2 inhibitors. Following high-throughput screening and evaluation of the inhibition potency of more than 100 natural products against CES2, it was found that the biflavones isolated from Ginkgo biloba displayed extremely potent CES2 inhibition activities and high specificity over CES1 (>1000-fold). Further investigation showed that ginkgetin, bilobetin, sciadopitysin and isoginkgetin potently inhibited CES2-catalyzed hydrolysis of various substrates, including the CES2 substrate-drug irinotecan. Notably, the inhibition potentials of four biflavones against CES2 were more potent than that of loperamide, a marketed anti-diarrhea agent used for alleviating irinotecan-induced intestinal toxicity. Inhibition kinetic analyses demonstrated that ginkgetin, bilobetin, sciadopitysin and isoginkgetin potently inhibited CES2-catalyzed fluorescein diacetate hydrolysis via a reversible and mixed inhibition manner, with K i values of less than 100 nM. Ensemble docking and molecular dynamics revealed that these biflavones could tightly and stably bind on the catalytic cavity of CES2 via hydrogen bonding and π-π stacking interactions, while the interactions with CES1 were awfully poor. Collectively, this study reports that the biflavones isolated from Ginkgo biloba are potent and highly specific CES2 inhibitors, which offers several promising lead compounds for developing novel anti-diarrhea agent to alleviate irinotecan-induced diarrhea.

19.
Fitoterapia ; 152: 104909, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33894315

RESUMO

3-Chymotrypsin-like protease (3CLpro) is a virally encoded main proteinase that is pivotal for the viral replication across a broad spectrum of coronaviruses. This study aims to discover the naturally occurring SARS-CoV-2 3CLpro inhibitors from herbal constituents, as well as to investigate the inhibitory mechanism of the newly identified efficacious SARS-CoV-2 3CLpro inhibitors. Following screening of the inhibitory potentials of eighty herbal products against SARS-CoV-2 3CLpro, Ginkgo biloba leaves extract (GBLE) was found with the most potent SARS-CoV-2 3CLpro inhibition activity (IC50 = 6.68 µg/mL). Inhibition assays demonstrated that the ginkgolic acids (GAs) and the bioflavones isolated from GBLE displayed relatively strong SARS-CoV-2 3CLpro inhibition activities (IC50 < 10 µM). Among all tested constituents, GA C15:0, GA C17:1 and sciadopitysin displayed potent 3CLpro inhibition activities, with IC50 values of less than 2 µM. Further inhibition kinetic studies and docking simulations clearly demonstrated that two GAs and sciadopitysin strongly inhibit SARS-CoV-2 3CLprovia a reversible and mixed inhibition manner. Collectively, this study found that both GBLE and the major constituents in this herbal product exhibit strong SARS-CoV-2 3CLpro inhibition activities, which offer several promising leading compounds for developing novel anti-COVID-19 medications via targeting on 3CLpro.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Inibidores de Protease de Coronavírus/farmacologia , Ginkgo biloba/química , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/uso terapêutico , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Inibidores de Protease de Coronavírus/uso terapêutico , Flavonas/farmacologia , Flavonas/uso terapêutico , Humanos , Estrutura Molecular , Fitoterapia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , SARS-CoV-2/enzimologia , Salicilatos/farmacologia , Salicilatos/uso terapêutico
20.
Food Funct ; 12(1): 162-176, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291124

RESUMO

Human carboxylesterase 2 (hCES2A) is a key target to ameliorate the intestinal toxicity triggered by irinotecan that causes severe diarrhea in 50%-80% of patients receiving this anticancer agent. Herbal medicines are frequently used for the prevention and treatment of the intestinal toxicity of irinotecan, but it is very hard to find strong hCES2A inhibitors from herbal medicines in an efficient way. Herein, an integrated strategy via combination of chemical profiling, docking-based virtual screening and fluorescence-based high-throughput inhibitor screening assays was utilized. Following the screening of a total of 73 herbal products, licorice (the dried root of Glycyrrhiza species) was found with the most potent hCES2A inhibition activity. Further investigation revealed that the chalcones and several flavonols in licorice displayed strong hCES2A inhibition activities, while isoliquiritigenin, echinatin, naringenin, gancaonin I and glycycoumarin exhibited moderate inhibition of hCES2A. Inhibition kinetic analysis demonstrated that licochalcone A, licochalcone C, licochalcone D and isolicoflavonol potently inhibited hCES2A-mediated fluorescein diacetate hydrolysis in a reversible and mixed inhibition manner, with Ki values less than 1.0 µM. Further investigations demonstrated that licochalcone C, the most potent hCES2A inhibitor identified from licorice, dose-dependently inhibited intracellular hCES2A in living HepG2 cells. In summary, this study proposed an integrated strategy to find hCES2A inhibitors from herbal medicines, and our findings suggested that the chalcones and isolicoflavonol in licorice were the key ingredients responsible for hCES2A inhibition, which would be very helpful to develop new herbal remedies or drugs for ameliorating hCES2A-associated drug toxicity.


Assuntos
Carboxilesterase/antagonistas & inibidores , Carboxilesterase/metabolismo , Chalconas/farmacologia , Flavonóis/farmacologia , Glycyrrhiza/química , Extratos Vegetais/química , Cromatografia Líquida , Fluorescência , Humanos , Técnicas In Vitro , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa